Geographic and Bathymetric Distributions for Many Commercially Important Fishes and Shellfishes Off the West Coast of North America, Based on Research Survey and Commercial Catch Data, 1912-84

by
Robert J. Wolotira, Jr. ${ }^{1}$, Terrance M. Sample, Sandra F. Noel, and Constance R. Iten
Resource Assessment and Conservation Engineering Division
Alaska Fisheries Science Center
7600 Sand Point Way N.E., BIN C-15700
Seattle, WA. 98115-0070
${ }^{1}$ Strategic Environmental Assessments Division
Office of Resource Conservation and Assessment National Ocean Service
6001 Executive Blvd.
Rockville, MD. 20852
U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary
National Oceanic and Atmospheric Administration
John A. Knauss, Administrator
National Marine Fisheries Service
William W. Fox, Jr., Assistant Administrator for Fisheries

NOAA Technical Memorandum NMFS

Abstract

The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center.

This document should be cited as follows:
Wolotira, R. J., Jr., T. M. Sample, S. F. Noel, and C. R. Iten. 1993. Geographic and bathymetric distributions for many commercially important fishes and shellfishes off the West Coast of North America, based on research survey and commercial catch data, 1912-84. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-6, 184p.

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

GENERAL DISCLAIMER

This document may be affected by one or more of the following statements

- This document has been reproduced from the best copy furnished by the sponsoring agency. It is being released in the interest of making available as much information as possible.
- This document may contain data which exceeds the sheet parameters. It was furnished in this condition by the sponsoring agency and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

BIBLIOGRAPHIC INFORMATION

Report Nos: NOAA-TM-NMFS-AFSC-6

Title: Geographic and Bathymetric Distributions for Many Commercially Important Fishes and Shellfishes Off the West Coast of North America, Based on Research Survey and commercial Catch Data, 1912-84.

Date: Feb 93

Authors: R. J. Wolotira, T. M. Sample, S. F. Noel, and C. R. Iten.
Performing Organization: National Marine Fisheries Service, Seattle, WA. Resource Assessment and Conservation Engineering Div. **National Ocean Service Rockville, MD. Strategic Environmental Assessments Div.

Type of Report and Period Covered: Technical memo.
Supplementary Notes: Prepared in cooperation with National Ocean Service, Rockville, MD. Strategic Environmental Assessments Div.

NTIS Field/Group Codes: 98F, 47D
Price: PC A08/MF A02
Availability: Available from the Nationa1 Technical Information Service, Springfield, VA. 22161

Number of Pages: 171p
Keywords: *Distribution(Property), *Commercial fish, *Commercial shellfish, *Fishes, Bathymetry, Abundance, Species diversity, Maps, Coastal waters, Tables (Data), Demersal fish, Harvesting, *Pacific Coast (North America), *Alaskan Gulf Coast (United States), Catch statistics.

Abstract: The report presents maps and tables that provide distribution information on 34 species of commercially important demersal fish and invertebrates found along the west coast of North America. They include such information as distributional range within the study region, relative abundance, presence by depth and region, frequency of occurrence by body size and depth, and locations of relatively recent (1981-83) commercial harvests. In addition to this information on demersal species, commercial harvest maps are also presented for six pelagic or anadromous fishes.

CONTENTS

Page
Introduction 1
Methods Followed to Develop Maps 3
Description of the Data 3
Consolidation of Catch Data for Mapping 5
Development of Distribution Maps 6
Methods Used to Evaluate Maps 13
Results of Evaluating the Maps 15
Conclusions 19
Species Maps and Depth Distribution Tables
Pacific cod 21
Pacific whiting 25
Walleye pollock 29
Sablefish 33
Lingcod 37
Atka mackerel 41
Pacific ocean perch 45
Widow rockfish 49
Bocaccio 53
Arrowtooth flounder 57
Petrale sole 61
Rex sole 65
Flathead sole 69
Pacific halibut 73
Rock sole 77
Yellowfin sole 81
Dover sole 85
English sole 89
Starry flounder 93
Alaska plaice 97
Greenland turbot 101
Spiny dogfish 105
Tanner crab (Chionoecetes bairdi) 109
Tanner crab (C. opilio) 113
Red king crab 117
Blue king crab 121
Golden or brown king crab 125
Dungeness crab 129
Northern pink shrimp 133
Coonstripe shrimp 137
Ocean pink shrimp 141
Spot shrimp 145
Sidestripe shrimp 149
Weathervane scallop 153

THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS (Continued)

Page
Maps of Commercial Harvests for Other Species
Pacific herring 156
Pink salmon 157
Chum salmon 158
Coho salmon 159
Sockeye salmon 160
Chinook salmon 161
Acknowledgments 163
References 165
Appendix A: Methodology for combining catch information from various trawl types for mapping relative abundance 171
Appendix B: Listings of data sets 173

INTRODUCTION

From 1984 to 1989, elements of the National Marine Fisheries Service's (NMFS) Alaska Fisheries Science Center (AFSC) collaborated with the National Ocean Survey's Strategic Environmental Assessment (SEA) Division in developing a data atlas for marine resources off the west coast of North America. The document, the West Coast of North America Coastal and Ocean Zones Strategic Assessment: Data Atlas (NOAA, 1990), summarizes important information on marine resources of the region, including descriptions of their utilization and their association with other human activities. A major component of the atlas is the synthesis of scientific information on over 100 species of marine mammals, birds, fishes, and invertebrates. The synthesis includes life history descriptions and extensive distribution maps for all species, along with details about recent commerical and recreational harvests for fish and invertebrates. Information was incorporated into a digitized data base that, through computer graphics, portrays spatial distribution of resources and harvest areas.

The large volume of collected information presented a problem in the development of the living marine resources portion of the data atlas. While the atlas is a thorough condensation of salient features for various resources, its format restricts the quantity of information presented for each species, and the cartographic rendition limits mapping detail. Important information on geographic distribution and human utilization, acquired through computer mapping of various data, simply could not be incorporated. Consequently, atlas project participants from the AFSC's Resource Assessment and Conservation Engineering (RACE) Division chose to present certain information for fish and invertebrates separately in this report. The report also documents computer procedures used to generate the maps and tables, describes information sets used to develop them, and evaluates their "representativeness" for depicting species distributions.

The following maps and tables that provide distribution information on 34 species of commercially important demersal fish and invertebrates found along the west coast of North America. They include such information as distributional range within the study region, relative abundance, presence by depth and region, frequency of occurrence by body size and depth, and locations of relatively recent (1981-83) commercial harvests. In addition to this information on demersal species, commercial harvest maps are also presented for six pelagic or anadromous fishes.

THIS PAGE INTENTIONALLY LEFT BLANK

METHODS FOLLOWED TO DEVELOP MAPS

Information in this report represents a consolidation of fishery research data and commercial harvest statistics from several sources within and outside the AFSC. The purpose of this data consolidation was to utilize as much information as possible for describing temporal and spatial distributions of commercially important species.

All computer mapping was conducted at the AFSC Sand Point facility located in Seattle, Washington, using RACE Division mapping software (Mintel and Oda 1983) as well as additional material specifically developed for producing computer maps for the West Coast of North America Data Atlas. One such addition was the incorporation of an adequate base map. A Lambert Conformal Conic projection was selected because of its relatively undistorted presentation of the large area addressed in the atlas. Incorporation of this projection into mapping subroutines on the AFSC Burroughs 7800 computer system and CALCOMP plotter was achieved using algorithms acquired from the SEA Division in Rockville, Maryland,

Description of the Data

The region encompassed by the West Coast of North America...Data Atlas includes coastal and open ocean areas from arctic Alaska to northern Mexico. The focus is the Exclusive Economic Zones or synonomous areas for the United States, Canada, and Mexico. Data used for portraying species distributions in this region are largely from trawl surveys, although a minor amount of trap, pot, and long-line information is also utilized (Table 1). The following is a description of data sets used for mapping distributions.

AFSC RACE Division Surveys

This data set is the cornerstone of distribution analyses performed for most species in the data atlas. RACE Division's resource assessment data is one of the most extensive sets of fishery research information in the world and includes decades of fishery data from throughout the northeast Pacific Ocean. The data base (RACEBASE) contains catch information (number and weight per species per sample or sampling location) and various biological data (e.g., size composition, length-weight-age, maturity) for hundreds of surveys performed off Alaska and the U.S. West Coast from 1953 through the present. Information from 1953 to 1984 was used.

Puke Bay Biological Laboratory Groundfish Surveys
The AFSC's Auke Bay Laboratory conducts periodic, coastal, bottom trawl surveys in northern Southeast Alaska. This data set contains unquantified catch information and sampling locations for nearly 60 surveys conducted from 1969 to 1982.

Table 1.-- Information on research data sets used for mapping distributions of fish and invertebrates off the west coast of North America.

(1) Samples are trawl hauls, pot lifts, longline sets, etc.
(2) Shrimp trap data were used only for mapping spot and coonstripe shrimps, and scallop dredge data only for weathervane scallops.

Canada Department of Fisheries and Oceans (CDFO) Fishery Resource Assessment

This data set contains quantified trawl catch information for over 60 Canadian trawl surveys conducted in British Columbia waters and the western Gulf of Alaska. These data were obtained from numerous Canadian publications and represent a subset of Canadian resource assessment data for 1963-79. It does not include information from joint U.S.-Canada surveys already contained in RACEBASE.

Alaska Department of Fish and Game Trawl Surveys

This data set contains quantified trawl catch information from crab assessment surveys conducted in the western Gulf of Alaska during 1982 and 1983.

Historic AFSC-archived Exploratory Fishing and Gear Research (EF\&GR) Surveys
This data set contains quantified trawl, crab pot, shrimp pot, and longline data gathered by the Bureau of Commerical Fisheries EF\&GR Bases in Juneau, Alaska and Seattle, Washington. during surveys conducted in Alaskan and U.S. West Coast waters from 1950 to 1970. This data set represents early survey information in addition to that already contained in RACEBASE.

Southern California Coastal Water Research Project (SCCWRP) Trawl Surveys

This data set contains enumerated trawl catch information (numbers caught per station or trawl haul) gathered by the SCCWRP in Southem California Bight from 1912 to 1977. NMFS and State/Federal Cooperative Scallop Surveys

This data set contains quantified scallop dredge data gathered during assessments of scallop stocks conducted in the Gulf of Alaska during 1968-69, and off Oregon in 1980.

In addition to research surveys, commercial harvests were also mapped to enhance descriptions of species distribution. Information on species harvest by statistical subarea during the period 198183 was obtained from several publications (e.g., Brown et al. 1984, Canada Department of Fisheries and Oceans 1985, and International Pacific Halibut Commission 1986, and others) and from catch summaries from the Alaska Department of Fish and Game, Washington Department of Fisheries, Oregon Department of Fisheries and Wildlife, the Pacific Fisheries Information Network (PacFIN), and the NMFS Foreign Fishery Observer Program.

Consolidation of Catch Data for Mapping

Survey information was converted into data records compatible with RACEBASE. For example, survey data were coded according to two file types: "haul-position" files containing location information for each sample, and "catch" files containing catch data (number and weight caught) for each species in the sample or catch, with a cross-referencing survey/haul identifier. Specific information in haul-position records included a survey number, haul or sample number, date/time
identifier, latitude and longitude coordinates, water depth, and gear type. Catch records usually included a survey/haul/sample number, species code, and weight and number caught. Some survey catch data were-not quantified since the original data listed catches as "few" or "many," and required special treatment for compatability with subroutines used to analyze the information. This special treatment did not affect data integrity, as this information was only incorporated into analyses for presence/absence, and not for relative abundance. After all non-RACE survey data were converted to RACEBASE format, these data were combined with the RACE information in all-inclusive files.

Commercial catch data were handled somewhat differently. Maps of statistical subareas were obtained from each agency providing commercial catch information. The perimeter for each harvest subarea was then sketched onto a nautical chart overlaid with grid lines drawn at every 10 minutes of latitude and 20 minutes longitude. All cells within a statistical subarea were assigned to that subarea; large subareas were often associated with several cells, whereas several small subareas were sometimes found within the same cell. Yearly subarea catches were apportioned equally into cells associated with that subarea.

Commercial catch information from foreign fleets was acquired from the NMFS Foreign Fishery Observer Program. This program records catches by areas of 30 minutes of latitude by 60 minutes of longitude. Consequently, commercial catch maps that contained both foreign and domestic data used the smallest common area, 30 minutes latitude by 60 minutes longitude, for presentation of the data.

Development of Distribution Maps

Information from over 33,500 hauls or samples was derived from consolidating the various data sets. Distribution maps and figures were developed for
--overall range,
--range by stage of life stage (juveniles and adults),
--current relative abundance,
-distribution and relative abundance based on commercial harvests, and
--depth distribution by geographic region.
Geographic range maps and depth distribution profiles were generated through a simple "presence/absence" analysis of the combined data. Relative abundance or resource density was depicted using more detailed examinations of specific data subsets. The following describes how each distribution map/table was assembled.

Overall Range

The combined set of research survey data was reorganized to examine the occurrence of a species by geographic location. This was performed using the general utility program, DMS III, which

Figure 1.--Geographic location of all samples contained in the combined data sets used from mapping species ranges.

Figure 2.--The distribution of sampling effort in all 10 minute latitude by 20 minute longitude cells containing samples used in mapping species range.
selects a subset of records that correspond, to another subset. (A description of this program is found in Mintel and Smith 1981). Two files were created for each species:, a sample with catch or "presence" file, and a sample without catch, or "absence" file.

Mapping species presence required further refinement since numerous samples were often taken at or near the same location (Fig. 1). The utility mapping program, UNDERPLOT, was employed' to eliminate confusing over-plotting. This program combines all information from a defined area into a single data point (e.g., the sum, the mean value, or the initial value). The presence-absence fileswere combined into cells of 10 minutes of latitude by 20 minutes of longitude (Fig. 2). All "presence" records were assigned a value of "1," and "absence" records were assigned zero. For maps shown in this report, values for all records in a cell were summed and those cells with values greater than zero were assigned a symbol and plotted on the range maps. It should be noted that other procedures also were used, such as dividing the sum of occurrences in a cell by the cell's total samples to identify the frequency of occurrence for a cell. In this case the frequency of species occurrence was indicated by symbol size. The frequency of occurrence data are not shown in this report because of the reduced size of the printed maps; symbols were too condensed and confusing.

Range by Life Stage

Maps of the distribution of juveniles and adults were developed only for certain fish species. These maps were developed in a manner similar to that used for the overall range maps. However, rather than using the master catch file, geographic occurrence by life stage was developed from the RACEBASE biological data file (Table 2). A similar, although much smaller, set of size composition data from SCCWRP surveys was also used. Once a size group was identified for a species, the biological data files were searched for data records in that size group. The selected records within each grid cell were condensed into a single data point using UNDERPLOT.

Size categories included in the two mapped life stages were based on size at maturity information in the literature. Since size at maturity varies by sex and occurs over a range of sizes, data for intermediate size intervals containing both adults and juveniles were eliminated. Consequently, the range maps focus on fully "adult" and "juvenile" distributions.

Relative Abundance

A subset of RACEBASE was used to develop maps of approximate population density. Only data from trawl surveys for 1980 through 1984 were used, as they were the most recent 5 -year time series available during initial preparation of the atlas. Relative abundance was expressed in a standarized weight caught per unit area fished (kilograms per hectare). The area fished was based on the average measured width of a trawl and the distance fished during a trawl haul. Catch from the trawl haul was then divided by the total area fished.

Before weight caught per area data could be mapped, catch rates for each type of trawl were adjusted to a standard. A net's relative fishing power for a species, or species group, was determined

Table 2 .--Summary of length information used from data bases.

Species	West Coast (1)	British Columbia	Southeast Alaska	Gulf of Alaska	Aleutian Islands	Bering Sea	All areas combined
Walleyo, pollock							
Pacific cod	298	224	294	63,014	39,784	250,504	354,118
Pacificilinke	14.699	331					142.030
Sablefish	54,369	196	25,429	29,664	27,210	25,638	162,506
Akamackorol				5.611	6,987	216	12.814
Pacific ocean perch	26,483	7,874	39,022	51,791	28,626	21,210	175,006
Whow rochifis	4.43	103	Q4.4	35			4,364.
Bocaccio	4,005	51	--	1			4,057
Arowionthlounost	9,901	1230	91481.	130.984	40,272	122.542	310,410
Rex sole	12.710		10,584	47,737	5,669	1,306	78,006
Fathead sola	870	199	2.502	104,476	22.206	239,901	370,154
Pacitic halibut	197	15	829	41,334	8,126	23,924	74,425
Biocheole	69	94	892	58, 397	243664	221,731	305,547.
Yellowtin sole			264	10,814	2,499	841,402	854,979
Doversolo	\$1,426	749	2,390	21, 149	838		76,552
English sole	9,386		159	1,346	1		10,892
Stany founder			17\%	1.044		1.733	2,894
Alaska plaice				227		149.444	149,671
Grienfand lumol				46	26,478	243,546	270070
Pacific herring	1,366			1,243	212	38,030	40,851

(1) Values for West Coast include measurements taken during Southern California Coastal Water Research Project surveys;
all other measurements are from RACEBASE.
(2) Includes measurements that were extrapolated from smaller samples; actual measurements likely less than one million.
through documented gear comparison studies (Craig Rose, AFSC, pers.commun., August 1988) and by relating the effective fishing area of the net (i.e., the measured width and height of the trawl while fishing) to that of a selected standard trawl type. This simple approach was not designed to identify the precise magnitude of the resource, but rather to relate catches from an array of different nets to identify areas of relatively high or low density. The method of standardization and fishing power values are presented in Appendix A.

Once the data were standardized, they were averaged for each grid cell. Several levels of density were defined, based on the range of relative abundance values for a species; lightest shading was used for lowest density, darkest shading for the highest.

Distribution and Relative Abundance Based on Commercial_Harvests

Relative abundance was also portrayed by mapping the locations of commercial harvests. This was performed in a manner similar to that described in the previous section, but with commercial catch data instead of research survey information. Catches of-a species were summed for all fishing gears and years in each map cell.

Depth Distribution by Geographic Region

Mapping information by area grid cells does not always provide a clear image of species distribution. The occurrence of a species is often depth dependent, and much of the atlas region contains steep seabed profiles. Consequently, a "frequency of occurrence by depth interval" table was developed for each species. Frequencies of occurrence (ratios of the number of samples containing a species to the total number of samples) were determined for nine depth intervals in six major geographic areas: Bering Sea, Aleutian Islands, Gulf of Alaska, Southeast Alaska, British Columbia, and the U.S. West Coast (fig. 3).

Figure 3.--Geographic location of the six regions used in describing species depth distribution by region. The ""ss indicate all 10 minute latitude by 20 minute longitude ceils where data are present.

THIS PAGE INTENTIONALLY LEFT BLANK

METHODS USED TO EVALUATE MAPS

These maps and tables are depictions of species distributions based on the assembled data, and they are only as good as the information used to create them. The adequacy of these-data for addressing species distribution depends on several factors, such as the economic value of the species, its abundance, distribution by life stage, substrate preference, and its depth distribution. Each of these factors influences data availability or representativeness as follows.

Economic Value

Most information in the data-sets was obtained during research surveys that focused on. demersal species of high economic interest. These surveys were designed to locate targeted species and identify their distributions, abundances, and biological characteristics. Examples of species with high economic values and resulting high data volumes are walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis) and red king crab (Paralithodes camtschaticus). Another aspect of economic value is the availability of harvest statistics. Even if a species is not targeted by research surveys, substantial information about distribution may be available through catch statistics. These harvest data often reflect distribution and abundance through where, when and how much is taken. Pacific herring. (Clupea pallasi) and salmon (Oncorhynchus spp.) are examples of species that infrequently occur in our survey data, but a wealth of information about their distributions can be obtained from commercial catch statistics.

Abundance

Substantial information is sometimes acquired for species that are not economically important, but are highly abundant and have distributions which match those of targeted species. Arrowtooth flounder (Atheresthes stomias) is a demersal fish of low economic value. However, it is abundant, widely distributed, and frequently encountered during surveys for desirable species such as several other flatfishes, Pacific cod, sablefish (Anoplopoma fimbria), and walleye pollock.

Distribution by Life Stage

Some species are accessible to demersal sampling gear throughout most of their juvenile and adult lives. Others are accessible only at certain times, and the extent of their availability affects the magnitude of data gathered on them. An example is Atka mackerel (Pleurogrammus monopterygius). It is usually found on or near the bottom as adults, but juveniles inhabit epipelagic, oceanic waters. Other pelagic species, such as Pacific herring and salmon, are available to the sampling gear of our data sets in very limited amounts at any life stage.

Substrate preference

Most sampling gears used in research surveys (except for traps or longlines) are designed for use on relative smooth bottoms. Consequently, organisms that occur mostly in rocky or steep habitats are not likely to be extensively surveyed, and they are infrequently present in our combined
data sets. Golden (or brown) king crab (Lithodes aequispina) is a species that prefers a steep slope habitat rarely sampled during surveys. Also, rockfishes often occur over rocky, difficult-to-sample substrates.

Depth distribution

Some species occur at depths shallower or deeper than most waters surveyed. Hence, their incidence in survey catches may be low even if they are abundant. Examples of this distribution pattern include Dungeness crab (Cancer magister) and starry flounder (Platichthys stellatus) in shallow water, and sablefish and Dover sole (Microstomus pacificus) in deep water.

We examined the accuracy and completeness of the developed maps and depth occurrence information by assessing how much data likely was available on each species and then rating each map and depth distribution table. An assessment of data content by species was accomplished by relating to each species the above listed factors that influence data availability. This was done by subjectively assigning high, moderate, or low values of data availability to each factor for every species. These values were represented numerically ($3=$ high, $2=$ moderate, $1=l o w$) and an overall rating of data adequacy was derived by summing the factor scores. One factor, distribution by life stage, was evaluated separately for adults and for juveniles; consequently, the highest data adequacy score for a species was 18 (i.e., 3×6 factors). A score of 18 meant that our assembled data bases likely had sufficient quantity and quality of information to adequately depict the distribution of that species. Scores of 14 to 17 meant that slightly fewer data were available for our geographic and depth analyses, but information content was still adequate to depict distributions of species associated with those scores. Finally, scores of 11 to 13 meant that only marginally adequate data were probably available for our distribution analyses of species associated with those scores. No scores below 11 were identified.

After data content was assessed for each species, a rating was assigned to every map and depth distribution table: 3 to those judged very good for portraying geographic or depth distributions, 2 to those judged good, and 1 for those judged as marginal or poor.

RESULTS OF EVALUATING THE MAPS

Results of the evaluations suggest that our maps and tabular information are adequate for describing the distribution of species that are economically important, highly abundant, and readily available to the survey sampling gear (Table 3). Nine species fell into this category: Pacific whiting (Merluccius productus), cod, and halibut; walleye pollock; yellowfin sole (Pleuronectes asper); Chinoecetes bairdi and C. opilio Tanner crabs; and red and blue (Paralithodes platypus) king crabs. Except for juveniles-of some of those species, nearly all maps and tables represented thorough descriptions of distribution (Table 4). The few occurrences of C. opilio Tanner crab and blue king crab off Kodiak Island, and the latter species also in the Aleutian Islands region, are likely misidentifications or errors in recording species codes or sampling location. Occasional incorrect locations could occur throughout the data base; however, these errors are specifically mentioned because of the obvious gaps between a few isolated occurrences of blue king crab and all other occurrences of that species.

Information for 19 species was judged slightly less substantial than that for the previous group, but still adequate to generally describe their distributions (Table 3). Fishes and invertebrates in this category included sablefish; lingcod (Ophidon elongatus); Pacific ocean perch (Sebastes alutus); widow rockfish (S. entomelas); arrow-tooth and starry flounders (Platichthys stellatus); Dover, English (Pleuronectes vetulus), flathead (Hippoglossoides elassodon), petrale (Eopsetta jordani), rex (Errex zachirus), and rock (P. bilineatus) soles; Alaska plaice (P. quadrituberculatus); Greenland turbot (Reinharditius hippoglossoides); northern and ocean pink shrimps (Pandalus borealis, P. jordani); sidestripe and coonstripe shrimps (Pandalopsis dispar, Pandalus hypsinotus); and weathervane scallop (Patinopecten caurinus). In most instances a reduced overall rating occurred because the species were not sufficiently valuable economically or abundant enough to warrant directed surveys. Several individual maps and tables that were rated less than "high" (Table 4) lacked data for juveniles or complete species breakdowns in the catch statistics (e.g., "other flounders" rather than individual species). The lower ratings for the distribution information about two abundant species, flathead sole and arrowtooth flounder, were not due to a lack of data, but rather to a likely misidentification of species. Both fishes co-occur with very similar-looking species in the eastern Bering sea: flathead sole with Bering flounder (Hippoglossoides robustus), and arrowtooth flounder with Kamchatka flounder (Atheresthes evermani) (Allen and Smith 1988). Similar misidentifications of flathead sole as petrale sole are probable causes for the existence of a few records of the latter species in the western Gulf of Alaska, and for a reduced rating of the general range map for petrale sole.

Adequacy of the maps and tabular material for presenting details of species distributions was judged marginally adequate for the following species: Atka mackerel; bocaccio (Sebastes paucispinis); spiny dogfish (Squalus acanthias); golden king crab; Dungeness crab; and coonstripe

Table 3.-Evaluations of quantity and quality of information used to describe spatial and depth distributions of selected invertebrate and fish species that occur off the west coast of North America.

SPECIES	FACTORS INFLUENCING DATA AVAILABILITY						
	$\begin{gathered} \text { Economic } \\ \text { value } \end{gathered}$	Abundance	Availability of adults	Availability of Juveniles	$\begin{gathered} \text { Dopth } \\ \text { distribution } \end{gathered}$	Substrate preference*	Total ranking
Species for which data should be adequate							
Pesteoco	93.			3	3.	3	18
Pacific whiting	3	3	3	3	3	3	18
Welay poiod	\$	3	\% ${ }^{3}$	9	\%. ${ }^{3}$	3	f8
Paciic halibut	3	3	3	3	3	3	18
Yoinomemota	\%	3	4	4	4	\%	18
Bairdi Tanner crab	3	3	3	3	3	3	18
Onth Tanor crab)	-	3	4	4	3. ${ }^{3}$	\#\#,	18
Red king crab	3	3	3	3	3	3	18
Buthinema	3	,	4	,	3	3	8
Specles for which fewer data are avallable, but stlll adequate							
Sibibed sbit		2	9	\% 3	9	\%	17
Arowtooth flounder	1	3	3	3	3	3	16
Potiese OH	丹	\%	4	3	-	, 3	16
Rex sole	3	2	3	2	2	${ }^{3}$	16
Gumblatumot	2	8	3	3	\%	3	16
Rock sole	2	2	3	3	3	3	16
Nothomplik stump	3.	3.	3.4.	\%	3.	3	\% 6
Ocean pink shrimp	3	3	?	1	3	3	16
Perficompatercos	,	2	2	,	3\%	2 \%	15
Widow rockish	2	3	2	3	3	2	15
Sabloish	\% ${ }^{3}$	2	2		2	3.	15
English sole	2	1	3	3	3	3	15
	\%	\%\% 2	\%		3	3	45
Lingcad	2	2	3	2	3	2	14
00\%0, 006		2	2				14
Starry flounder	1	2	3	3	2	3	14
	3	\$	4	2	3	-	4
Coonstripe shrimp	2	2	2	2	$\cdots 3$	3	14
Shestriposmimp	2	2	2	2	3 3.	3	44
Specles for which data are marginally adequate							
Atamacker	2				\%\% $\%$		
Dungeness crab	3	3	1	1	1	3	13
\%00\% or mownsid	3	\%	\%	\%	\%	2.	\% 2
Spiny dogish	1	1	2	2	3	2	11
Bocucso	1	4	2	2	3	\% \% \%	\% 1
Pacific herring	3	3	2	1	1	- 1	11
Phowedmon	3	3	2**	\$	1		\%\%\%
Chum salmon	3	3	2	1	1	1	11
Soblove samon	3.	\%\#\% 3	\% ${ }_{\text {\% }}$,	\%\#\#	\%	\%	川.
Coho salmon	3	3	2	- 1	¢ 1	¢ 1	11
Chiliog samon	3	3	2	,	.	\% ${ }^{\text {\% }}$	\geqslant
spol shrimp	3	1	2	1	2	2	11

3 = high; 2 = moderate; 1 = low.
*availability due to substrate preference by species

Table 4.--Rating of each map and table in this report for "completeness" or accuracy in depicting the distribution of a species.

coonstripe and sidestripe shrimps. Reduced availability to the sampling gear was a common problem (Table 3). For example, Atka mackerel can be meso-benthopelagic as adults (Rutenberg 1962, Gorbunova 1962) and often oceanic, epipelagic as juveniles (e.g., some have been caught 900 km offshore (Fisheries Research Institute 1989)). Similar oceanic, epipelagic distributions occur with all salmon species. Other factors that reduced species occurrence in survey samples were low abundance (e.g., golden king crab), shallow-water distribution (e.g., Dungeness crab), and substrate preference. Despite these drawbacks, certain maps were judged as adequate representations of distribution. Examples are the general range maps for lingcod, bocaccio, spiny dogfish, and sidestripe and spot (Pandalus platyceros) shrimps, and the commercial harvest maps for Atka mackerel, all five salmon species (Oncorhynchus kisutch, O. keta O. gorbuscha, O. nerka and O. tshawytscha). Pacific herring, spiny dogfish, and golden king and Dungeness crabs (Table 4).

CONCLUSIONS

Computer mapping of research data and catch statisticsis a valuable technique for describing invertebrate and fish resources off the west coast of North America. We initiated this activity to map distributions of invertebrate and fish species at levels of detail not possible in other regional NOAA atlases. Our efforts were usually successful. An evaluation of the completeness or accuracy of the maps and depth occurrence tables provided the following conclusions.
*The combined data sets were often adequate for presenting general information such as overall range, area and bathymetric ranges for large adult fish, relative abundance, areas of commercial harvest, and overall depth distribution by region.
${ }_{*}$ The commercial harvest maps were also very good for describing distribution and areas of relative abundance when individual species information was available in the catch statistics.
${ }^{*}$ Computer mapping of the research surveys data was useful for depicting distributions of any species and was especially valuable for mapping demersal species that are commercially important or highly abundant.

Accurate depictions of distributions for pelagic species was not always possible, in part because these maps were developed solely from commercial catch data.
${ }^{*}$ Although some catch statistics maps conveyed accurate images of distribution for certain pelagic species, those maps only showed the locations of those species when they were available to commercial fishing gear (e.g., salmon are typically caught only while returning to parent streams to reproduce).

For shallow-occurring invertebrates, neither the research surveys nor commercial harvest data was sufficient for thoroughly mapping distributions.
uLevels of data adequacy varied across information categories for a species and across species for a given category of information (e.g., range, commercial harvest, depth distribution, etc.).
. Presentations of the range of juveniles and the depth distributions of both large and small fish were usually judged lower in quality than those for all sizes combined.

Species maps and depth distributions to follow.

THIS PAGE INTENTIONALLY LEFT BLANK

Pacific cod

Figure 4.--The overall range of Pacific cod off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 5.--Location of commercial harvests of Pacific cod off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 6.--The relative abundance of Pacific cod off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 7.--The range of small (20 cm or less) Pacific cod off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 8.--The range of large (30 cm or larger) Pacific cod off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 5.--Total numbers of samples (hauls) and numbers of samples containing Pacific cod by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 9.--Frequency of occurrence by depth interval by region for Pacific cod off thewest coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Pacific whiting

Figure 10.--The overall range of Pacific whiting off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 11.--Location of commercial harvests of Pacific whiting off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 12.--The relative abundance of Pacific whiting off the west coast of North America 1980-84, based on catch information from various NMFS trawl surveys.

Figure 13.--The range of small (20 cm or less) Pacific whiting off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 14.--The range of large (30 cm or larger) walleye pollock Off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 6.--Total numbers of samples (hauls) and numbers of samples containing Pacific whiting by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 15.--Frequency of occurrence by depth interval by region for Pacific whiting off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Walleye pollock

Figure 16.--The overall range of walleye pollock off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 17.--Location of commercial harvests of walleye pollock off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 18.--The relative abundance of walleye pollock off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 19.--The range of small (20 cm or less) walleye pollock off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 20.--The range of large (30 cm or larger) walleye pollock Off the west coast Of North America based on data from several resource assessment data bases for 1912-84.

Table 7.--Total numbers of samples (hauls) and numbers of samples containing walleye pollock by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 21 .--Frequency of occurrence by depth interval by region for walleye pollock off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Sablefish

Figure 22.--The overall range of sablefish off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 23.--Location of commercial harvests of sablefish off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 24.--The relative abundance of sablefish off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 25.--The range of small (50 cm or less) sablefish off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 26.--The range of large (60 cm or larger) sablefish off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 8.--Total numbers of samples (hauls) and numbers of samples containing sablefish by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 27.--Frequency of occurrence by depth interval by region for sablefish off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Lingcod

Figure 28.--The overall range of lingcod off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 29.--Location of commercial harvests of lingcod off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 30.--The relative abundance of lingcod off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Table 9.--Total numbers of samples (hauls) and numbers of samples containing lingcod by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 31.--Frequency of occurrence by depth interval by region for lingcod off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Atka mackerel

Figure 32.--The overall range of Atka mackerel off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 33.--Location of commercial harvests of Atka mackerel off the west coast Of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 34.--The relative abundance of Atka mackerel off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 35.--The range of small (20 cm or less) Atka mackerel off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 36.--The range of large (30 cm or larger) Atka mackerel off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 10.--Total numbers of samples (hauls) and numbers of samples containing Atka mackerel by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 37.--Frequency of occurrence by depth interval by region for Atka mackerel off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Pacific ocean perch

Figure 38.--The overall range of Pacific ocean perch off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 39.--Location of commercial harvests of Pacific ocean perch off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 40.--The relative abundance of Pacific ocean perch off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 41.--The range of small (20 cm or less) Pacific ocean perch off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 42.--The range of large (30 cm or larger) Pacific ocean perch off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 11 .--Total numbers of samples (hauls) and numbers of samples containing Pacific ocean perch by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 43.--Frequency of occurrence by depth interval by region for Pacific ocean perch off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Widow rockfish

Figure 44.--The overall range of widow rockfish off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 45.--Location of commercial harvests of widow rockfish off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 46.--The relative abundance of widow rockfish off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 47.--The range of small (30 cm or less) widow rockfish off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 48.--The range of large (40 cm or larger) widow rockfish off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 12.--Total numbers of samples (hauls) and numbers of samples containing widow rockfish by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 49.--Frequency of occurrence by depth interval by region for widow rockfish off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Bocaccio

Figure 50.--The overall range of bocaccio off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 51.--The relative abundance of bocaccio off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 52.--The range of small (40 cm or less) bocacclo off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 53 :--The range of large (50 cm or larger) bocaccio off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 13.--Total numbers of samples (hauls) and numbers of samples containing bocaccio by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 54.--Frequency of occurrence by depth interval by region for bocaccio off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Arrowtooth flounder

Figure 55.--The overall range of arrowtooth flounder off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 56.--The relative abundance of arrowtooth flounder off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 57.--The range of small (20 cm or less) arrowtooth flounder off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 58.--The range of large (30 cm or larger) arrowtooth flounder off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 14.--Total numbers of samples (hauls) and numbers of samples containing arrowtooth flounder by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 59.--Frequency of occurrence by depth interval by region for arrowtooth flounder off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Petrale sole

Figure 60.--The overall range of petrale sole off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 61 .--Location of commercial harvests of petrale sole off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 62.--The relative abundance of petrale sole off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Table 15.--Total numbers of samples (hauls) and numbers of samples containing petrale sole by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 63.--Frequency of occurrence by depth interval by region for petrale sole off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-44.

THIS PAGE INTENTIONALLY LEFT BLANK

Rex sole

Figure 64.--The overall range of rex sole off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 65.--The relative abundance of rex sole off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 66.--The range of small (20 cm or less) rex sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 67.--The range of large (30 cm or larger) rex sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 16.--Total numbers of samples (hauls) and numbers of samples containing rex sole by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 68.--Frequency of occurrence by depth interval by region for rex sole off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Flathead sole

Figure 69.--The overall range of flathead sole off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 70.--Location of commercial harvests of flathead sole off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 71.--The relative abundance of flathead sole off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 72.--The range of small (20 cm or less) flathead sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 73.--The range of large (30 cm or larger) flathead sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 17.--Total numbers of samples (hauls) and numbers of samples containing flathead sole by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 74.--Frequency of occurrence by depth interval by region for flathead sole off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Pacific halibut

Figure 75.--The overall range of Pacific halibut off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 76.--Location of commercial harvests of Pacific halibut off the west coast of North America, 1981-83; domestic, foreign and join venture harvests combined.

Figure 77.--The relative abundance of Pacific halibut off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 78.--The range of small (70 cm or less) Pacific halibut off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 79.--The range of large (80 cm or larger) Pacific halibut off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 18.--Total numbers of samples (hauls) and numbers of samples containing Pacific halibut by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 80.--Frequency of occurrence by depth interval by region for Pacific halibut off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Figure 81.--The overall range of rock sole off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 82.--The relative abundance of rock sole off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 83.--The range of small (20 cm or less) rock sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 84.--The range of large (30 cm or larger) rock sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 19--Total numbers of samples (hauls) and numbers of samples containing rock sole by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 85.--Frequency of occurrence by depth interval by region for rock sole off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Yellowfin sole

Figure 86.--The overall range of yellowfin sole off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 87.--Location of commercial harvests of yellowfin sole off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 88.--The relative abundance of yellowfin sole off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 89.--The range of small (20 cm or less) yellowfin sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 90.--The range of large (30 cm or larger) yellowfin sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 20.--Total numbers of samples (hauls) and numbers of samples containing yellowfin sole by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

	Depth (meters)	West cosst			British Columbla			Southeast Alaska			Gulf of Alaska			Alautlan lelands			Bering Sea			All areas comblned		
		Toral Hauls	Osc.	*	Tocal Hauls	Oce.	*	Total Houls	Oce.	x	Total Houls	Oec.	\%	Total llauls	Occ.	x	Total llauts	Oce.	x	Totol llouls	Ocs.	x
All occurrences	0.50	1603	\cdots	..	119	-	-	145	53	37	432	217	50	74	4	5	3113	2210	71	5491	2484	45
	51-100	2270	139	-	.	486	195	40	2044	654	32	194	30	15	4186	3577	85	9322	4457	48
	101-200	2551	326	--	-.	527	20	4	5013	642	13	623	30	5	2778	532	19	11833	1234	10
	201-300	921	-	\cdots	250	-	\cdots	399	-.	..	1451	4	0	244	-.	.	256	5	2	3522	9	0
	301-400	439	56	.-	.-	191	--	--	246	.	.-	125	1	1	132	4	3	1190	5	0
	401.500	329	-	-	11	.	.	146	.	.-	108	-.	-.	104	.	..	138	1	1	836	1	0
	501.600	14	--	..	2	..	.-	192	40	.	..	62	.	..	66	--	-	506	..	-.
	601-1000	321	-	.	6	-	--	243	--	.-	60	--	--	89	134	..	.	853	-	.
	>1000	25	-	--	2	.	-.	-	\cdots	-		--	--		-.	-.	\%	..	\cdots	27
	total	8608	-.	-.	911	-.	.-	2329	268	12	9394	1517	16	1515	65	4	10803	6329	59	33580	8190	24
Small fish (520 cm)	0.50	-	\cdots	-	\cdots	.-	-	1	1	100		65	67	1		100	1466	1413	96	1565	1480	95
	51-100	.-	-.	---		173	34	20	19		37	2609	1816	70	2801	1857	66
	101-200	--	.-	--	-.	-.	.-	.-	..	-.	92	4	4	12	1	8	278	70	25	382	75	20
	201-300	.-	--	\cdots-	.-	2		-	,	-.		27	7	2	38	7	2
	$301-400$	\cdots	--	\cdots	\cdots	\cdots	-	\cdots	.	\cdots	\cdots	-	--	-	..
	401-500	-	--	\cdots	-	.	\cdots	-.	\cdots	\therefore	-	.-	\cdots	-	..	--	..
	$501-600$	-	\cdots	\cdots	*-	\cdots	\cdots	-	-	--	-	-	--	-	--	.	..	-
	601-1000	\cdots	\because	..	\cdots	\cdots	\cdots	\cdots	--	--	--	--	-	\cdots	\cdots	.	\cdots	-	-	\cdots
	$\rightarrow 1000$	\cdots	\because	\cdots	\cdots	-	\cdots	\cdots	1	\cdots	3	\cdots	28	32	-	-	5	\cdots	-	\because	\cdots	\because
	total	-	--	-	.	.	-.	1	1	100	362	103	28	32	9	28	4353	3299	76	4748	3412	72
Large fish ($\geq 30 \mathrm{~cm}$)	0.50	..	\cdots	..	-	--	-	1		100	97	75	77	1		100	1466	1212	83	1565	1289	82
	51-100	--	-	--	--	\cdots	-	-.	--	--	173	159	92	19			2609	2384	91	2801	2562	91
	101-200	-	-	.-	--	-	-	\cdots	..	.	92	81	88	12	12		278	242	87	382	335	88
	201-300	-.	-	-	.-	.-	.-		-	-.	-.	..	-.	..	.	\cdots	-.		\cdots
	$301-400$ 401.500	\ldots	\cdots	-.	-.	..	--	\cdots	\cdots	\cdots	\cdots	-	\cdots	-	-	-	-	-	.	\cdots	.	\cdots
	$\begin{aligned} & 401 \cdot 500 \\ & 501 \cdot 600 \end{aligned}$	-.	\cdots	\cdots	\cdots	\cdots	--	--	\cdots	--	\cdots	-	--	\cdots	--	--	\cdots	..	\cdots	-	-.	..
	601-1000	.	.	-.	-	\cdots	\cdots	\cdots	--	\cdots	-	--	-	--	-.	\cdots	-.	\cdots
	>1000	..	-	-.	\cdots	-	--	-	\cdots	\cdots	\cdots	.	.	:.	-	--	..	--	\cdots	--	--	..
	total	--	-	.-	-	-	-	1		100	362	315	87	32	32	100	4353	3838	88	4748	4186	88

Figure 91 .--Frequency of occurrence by depth interval by region for yellow-fin sole off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Dover sole

Figure 92.--The overall range of Dover sole off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 93.--Location of commercial harvests of Dover sole off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 94.--The relative abundance of Dover sole off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 95.--The range of small (20 cm or less) Dover sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 96--The range of large (30 cm or larger) Dover sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 21.--Total numbers of samples (hauls) and numbers of samples containing Dover sole by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 97.--Frequency of occurrence by depth interval by region for Dover sole off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

English sole

Figure 98.--The overall range of English sole off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 99.--Location of commercial harvests of English sole off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 100.--The relative abundance of English sole off the west coast of North America, 1980-84, based on catch information from various, NMFS trawl surveys.

Figure 101 .--The range of small (20 cm or less) English sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 102.--The range of large (30 cm or larger) English sole off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 22.--Total numbers of samples (hauls) and numbers of samples containing English sole by depth interval and geographic region from resource assessment surveys off the' west coast of North America during 1912-84.

Figure 103.--Frequency of occurrence by depth interval by region for English sole off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Starry flounder

Figure 104.--The overall range of starry flounder off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 105.--Location of commercial harvests of starry flounder off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 106.--The relative abundance of starry flounder off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 107.--The range of small (20 cm or less) starry flounder off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 108.--The range of large (30 cm or larger) starry flounder off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 23.--Total numbers of samples (hauls) and numbers of samples containing starry flounder by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 109.--Frequency of occurrence by depth interval by region for starry flounder off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Alaska plaice

Figure 110.--The overall range of Alaska plaice off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 111 .--The relative abundance of Alaska plaice off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 112.--The range of small (20 cm or less) Alaska plaice off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 113.--The range of large (30 cm or larger) Alaska plaice off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Table 24.--Total numbers of samples (hauls) and numbers of samples containing Alaska plaice by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 114.--Frequency of occurrence by depth interval by region for Alaska plaice off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Greenland turbot

Figure 115.--The overall range of Greenland turbot off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 116.--The relative abundance of Greenland turbot off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Figure 117.--The range of small (20 cm or less) Greenland turbot off the west coast of North America based on data from several resource assessment data bases for 1912-84.

Figure 118.--The range of large (30 cm or larger) Greenland turbot off the west coast of North America based on data from Several resource assessment data bases for 1912-84.

Table 25.--Total numbers of samples (hauls) and numbers of samples containing Greenland turbot by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 119.--Frequency of occurrence by depth interval by region for Greenland turbot off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Spiny dogfish

Figure 120.--The overall range of spiny dogfish off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 121.--Location of commercial harvests of spiny dogfish off the west coast of North America, 1981-83; domestic, foreign and joint venture harvests combined.

Figure 122.--The relative abundance of spiny dogfish off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Table 26.--Total numbers of samples (hauls) and numbers of samples containing spiny dogfish by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

	$\begin{aligned} & \text { Depth } \\ & \text { (netera) } \end{aligned}$	West coast			British Columbla			Southeast Alaska			Qulf of Alaska			Aleutlan Islands		Bering Sea				All areas combined		
		potal Heuls	Occ.	*	$\begin{gathered} \begin{array}{c} \text { Total } \\ \text { Haul } \end{array} \end{gathered}$	Dec.	x	total Hauls	ocs.	*	Total Houta	oce.	*	Total llouls	oce.	x	$\text { Totol! } \text { Houls }$	occ.	*	Torol llouls	occ.	\%
	0.50	1608	140	9	119	45	38	145	4	3	432	48	11	74	3	\because	3113	3	0	5491	240	4
	51.100	2270	578	2	139	59	42		15	${ }_{22}^{3}$	2084	134 310	7	194	14	2	4186 2778	8	0	${ }_{1} 98322$	${ }^{7624}$	${ }^{9} 4$
	101-200	251	$\stackrel{1034}{104}$	41	326 250	139 158	43	527 39	118	${ }_{27}^{22}$	5013 1451	${ }^{310}$	6	623 24	14	2	$\begin{array}{r}278 \\ 256 \\ \hline 1\end{array}$	8	0	11833 3522	1624 705	$1{ }^{14}$
All	$201-400$	439	108	25	56	12	21	191	41	21	246	8	3	125	1	1	132	\cdots	.	1190	170	14
	$401-500$	329	2	8	11	1	9	146	21	14	108	11	10	104	-	\cdots	138	\square	;	836	58	7
occurrences	501-600	14	-.	\cdots	2	1	50	192	6	3	40		\cdots	62	\because	\because	${ }^{66}$	1	2	${ }^{506}$	8	2
	$\xrightarrow{\text { 601-1000 }}$	321 25	\because		2	\because	\because	$\stackrel{24}{\square}$.	.	60	\cdots	\because	$\stackrel{89}{9}$.	\cdots	136	-.		${ }_{27} 8$.	0
	totat	8808	2227	26	911	415	46	232	312	13	9394	599	6	1515	25	2	10803	21.	0	33580	3602	11

Figure 123.--Frequency of occurrence by depth interval by region for spiny dogfish off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Tanner crab (Chionoecetes bairdi)

Figure 124.--The overall range of bairdi Tanner crab off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 125.--Location of commercial harvests of bairdi Tanner crab off the west coast of North America, 1981-83 combined.

Figure 126.--The relative abundance of bairdi Tanner crab off the west coast of North America, ${ }^{1980-84,}$, based on catch information from various NMFS trawl surveys.

Table 27.--Total numbers of samples (hauls) and numbers of samples containing bairdi Tanner crab by depth interval and geographic region from resource assessment surveys off the

Figure 127.--Frequency of occurrence by depth interval by region for bairdi Tanner crab off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Tanner crab (Chionoecetes opilio)

Figure 128--The overall range of opolio Tanner crab off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 129.--Location of commercial harvests of opilio Tanner crab off the west coast of North America, 1981-83 combined

Figure 130.--The relative abundance of opilio Tanner crab off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Table 28.--Total numbers of samples (hauls) and numbers of samples containing opilio Tanner crab by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 131 .--Frequency of occurrence by depth interval by region for opilio Tanner crab off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Red king crab

Figure 132.--The overall range of red king crab off the west coast of, North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 133.--Location of commercial harvests of red king crab off the west coast of North America, 1981-83 combined.

Figure 134.--The relative abundance of red king crab off the west coast of North America, 1980-84, based on catch information from various NMFS trawl surveys.

Table 29.--Total numbers of samples (hauls) and numbers of samples containing red king crab by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 135.--Frequency of occurrence by depth interval by region for red king crab off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Blue king crab

Figure 136.--The overall range of blue king crab off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 137.--Location of commercial harvests of blue king crab off the west coast of North America, 1981-83 combined.

Figure 138.--The relative abundance of blue king crab off the west coast of North America, 1980-84 based on catch information from various NMFS trawl surveys.

Table 30.--Total numbers of samples (hauls) and numbers of samples containing blue king crab by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 139.--Frequency of occurrence by depth interval by region for blue king crab off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Golden king crab

$0 \quad 100 \mathrm{~mm}$

Figure 140.--The overall range of brown or golden king crab off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 141.--Location of commercial harvests of brown or golden king crab off the west coast of North America, 1981-83.

Table 31.--Total numbers of samples (hauls) and numbers of samples containing brown king crab by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

		West coast			Britlah Columbia			Southeast Alaska			Gulf of Alaska			Aleutlan Islands			Bering Sea			All areas combined		
	Depth (meters)	Total Haula	oce.	x	Totol Hauls	Occ.	X	rotal Houls	Ocs.	X	Total Haula	Oce.	\%	Total llouls	Occ.	x	Total Heuls	Occ.	x	lotal Hauls	Dec.	z
	0-50	1608	.	.	119	\cdots	..	145	\cdots	.	432	-	\cdots	74	-	.	3113	.	.	5491	\cdots	\because
	51-100	2270	.	..	139	.	.	486	2044	1	0	194	-	--	4186	-		9322	1	0
	101-200	2551	\cdots	..	326	\cdots	.-	527	-.	.	5013	-	.	623	\cdots	\cdots	2778	-	.	1183	-	-
	201.300	921		.	250	-	\cdots	399	-	\because	1451	3	0	244	1	1	256	-	-	3522	5	0
Al	$301-400$	438	.	..	56	191	..	.	246	\cdots	.	125	1	1	132	--	.	1190	1	0
occurrences	401-500	329	\because	\cdots	11	-	\cdots	146	-	\cdots	108	-	\cdots	104	.	\cdots	138	-	\cdots	836	.-	\cdots
	501-600	144	\cdots	\cdots	2	\cdots	.	192		--	40		\cdots	82	\because	-	-66	\cdots	.	506	.	\cdots
	$\begin{array}{r} 601 \cdot 1000 \\ >1000 \end{array}$	$\begin{array}{r} 321 \\ 25 \end{array}$	".	\cdots	6		\cdots	243		\cdots	60	-	--	89	\cdots	\cdots	134	-.	..	853	-	..
-	TOTAL	8608	.	..	911			2329	\cdots		9394	4	0	1515	3	0	10803	-.	..	33580	7	0

Figure 142.--Frequency of occurrence by depth interval by region for brown or golden king crab off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Dungeness crab

Figure 143.--The overall range of Dungeness crab off the west coast of North America based on an analysis of several resource assessment dala bases for 1912-84.

Figure 144.--Location of commercial harvests of Dungeness crab off the west coast of North America, 1981-83.

Table 32.--Total numbers of samples (hauls) and numbers of samples containing Dungeness crab by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

		West coast			Britlah Columbla			Southeast Alaska			Gulf of Alaske			Aleutlan lelands			Bering Sea			All areas combined		
-	Depth (meters)	Total Hauls	Oce.	$\%$	Total liauls	Oce,	x	Total Ilauls	Oce.	*	Total Hauls	Oce.	X	Total llauls	Oce.	X	Tatal Hauts	Oce.	X	Total llauls	Oce.	x
	0-50	1608	108	7	119	1	1	145	28	19	432	183	42	74	4	5	3113	15	0	5491	339	6
	51-100	2270	228	10	138	..	.	486	38	8	20.4	281	14.	- 194	1	1	4186	9	- 0	9322	557	6
	101-200	2551	188	7	326	.	..	527	7	1	5013	113	2	623	-.	.	278	..	.	11833	288	2
	201-300	921	55	6	250	.	.	399	.	..	1451	8	1	244	.	.	256	.	.	3522	63	2
All	$301-400$	439	6	1	56	\cdots	\cdots	191	\cdots	\cdots	246	1	0	125	.	.	132	..	.	1180	7	1
Al	$401-500$	329	11	.	\cdots	146	108	1	1	104	.	.	138	.	.	836	1	0
occurrences	501-600	144	.	.	2	-	.	192	..	\cdots	40	-	.	62	..	.	66	..	.	506	.	
occurrences	609-1000	321	\cdots	-	6	-.	.	243	-	.	60	.	-	89	.	-	134	.-	.	853	..	\cdots
	>1000	25		\cdots	2	\cdot	\cdots	\cdots	\cdots	\cdots	-	..	\cdots	.	-	-	..	-	-	27	.	.
	total	- 8608	565	7	911	1	0	2329	73	3	9394	587	6	1515	5	0	10803	24	0	33580	1255	4

Figure 1451--Frequency of occurrence by depth interval by region for Dungeness crab off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Northern pink shrimp

Figure 146.--The overall range of northern pink shrimp off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 147.--Location of commercial harvests of northern pink shrimp off the west coast of North America, 1981-83.

Table 33.--Total numbers of samples (hauls) and numbers of samples containing northern pink shrimp by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 148.--Frequency of occurrence by depth interval by region for northern pink shrimp off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Coonstripe shrimp

Figure 149.--The overall range of coonstripe shrimp off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 150.--Location of commercial harvests of coonstripe shrimp off the west coast of North America, 1981-83.

Table 34.--Total numbers of samples (hauls) and numbers of samples containing coonstripe shrimp by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

		West coast			Britlah Columbla			Southeast Alaska			Gulf of Alaska			Aleullans			Bering Sea			All areas comblned		
	$\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$	Total. Haula	Oce.	\pm	Total Haul	Oce.	X	Tosal Hauls	Oce.	x	Total Hauls	Oec.	X	Total Houls	Occ.	*	Total Houls	Occ.	x	Total Haulo	Oce.	x
	0-50	1614	1	0	119	\cdots	\cdots	1579	409	26	452	24	5	76	2	3	3114	38	1	6952	474	7
	51-100	2320		0	146	6	6	6846	2464	36	2463	375	15	195	14	7	4197	6	0	16170	2866	18
	101-200	2590	15	1	326	-	-	3997	705	18	5132	605	12	623	29	5	2778	--	.-	15451	1354	9
	201.300	921	2	0	250	.	..	399			1451	14	1	244	6	2	256	..	.	3560	22	1
All	301.400	439	-.	-	56	-	-	197	2	1	246	1	0	125	9	7	132	..	.-	1196	3	0
Al	401.500	329	-	\cdots	11	-	..	146	-.	-.	108	..	-	104	2	2	138	.-	..	842	..	
occurrences	501-600	144	-	\cdots	2	-	-	192	--	.	40	\cdots	\cdots	62	1	2	66	.	-.	506	-.	.-
occurrences	601-1000	321	-	\cdots	6	\cdots	\cdots	243	-	.	60	\cdots	\cdots	89	-.	\cdots	134	.-	..	853	--	.
	>1000	8	\because	\cdots	2	-	\cdots	\cdots	\cdots	-			\because	\cdots	\because	\cdots	\cdots	\cdots	.	27	\cdots	\cdots
	total	8703	19	0	918	6	1	13643	3580	26	9952	1019	10	1516	51	3	10815	44	0	45567	4719	10

Figure 151.--Frequency of occurrence by depth interval by region for coonstripe shrimp off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.'

THIS PAGE INTENTIONALLY LEFT BLANK

Ocean pink shrimp

Figure 152.--The overall range of ocean pink shrimp off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 153.--Location of commercial harvests of ocean pink shrimp off the west coast of North America, 1981-83.

Table 35.--Total numbers of samples (hauls) and numbers of samples containing ocean pink shrimp by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

		West coast			Eritish Columbla			Southeast Alaska			Gulf of Alaska			Aleutlan Islands			Bering Sea			All areas combined		
	Depth (meters)	7otal hauls	Ocs.	2	Total Houla	Occ.	x	Jotal Houls	Occ.	X	Total Haula	Occ.	X	Tozal liauts	Occ.	\%	Total. Hauls	Occ.	x	Total Houls	Oce.	z
	0.50	1608	5	0	119	1	1	145	-	--	432	-	--	74	\cdots	.	3113	\cdots	\cdots	5491	6	0
	51-100	2270	46	2	139	2	1	486	7	1	2044	5	0	194	\cdots	\cdots	4186	2	0	9322	62	1
	101-200	2551	463	18	326	32	10	527	29	6	5013	44	1	623	2	0	2778	2	0	11833	572	5
	201-300	921	82	8	250	3	-	399	18	5	1451	4	0	244	.	..	256	2	-	3522	104	3
All	$301-400$	439	13	3	56	--	\cdots	191		\cdots	246		\cdots	125	.	-	132	.	-.	1190	13	1
All	401-500	329	3	1	11	--	\cdots	146	.-	..	108	--	.	104	138	.	..	836	34	0
occurrences	501-600	144	.-	..	2	-	\cdots	192	\cdots	\cdots	40	-	.	62	-	.	66	--		506	--	..
	$601-1000$ >1000	321 25	6 2	--	\cdots	243	60	--	\cdots	89 .	-.	\cdots	134	--	\cdots	853 27	-.	\ldots
	total	8608	612	7	911	35	4	2329	54	2	9394	53	1	1515	2	0	10803	4	0	33580	760	2

Figure 154.--Frequency of occurrence by depth interval by region for ocean pink shrimp off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Spot shrimp

Figure 155.--The overall range of spot shrimp off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 156.--Location of commercial harvests of spot shrimp off the west coast of North America, 1981-83 domestic.

Table 36.--Total numbers of samples (hauls) and numbers of samples containing spot shrimp by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 157.--Frequency of occurrence by depth interval by region for spot shrimp off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Sidestripe shrimp

Figure 158.--The overall range of sidestripe shrimp off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84

Figure 159.--Location of commercial harvests of sidestripe shrimp off the west coast of North America, 1981-83.

Table 37.--Total numbers of samples (hauls) and numbers of samples containing sidestripe shrimp by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

Figure 160.--Frequency of occurrence by depth interval by region for sidestripe shrimp off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

THIS PAGE INTENTIONALLY LEFT BLANK

Weathervane scallop

Figure 161 .--The overall range of weathervane scallop off the west coast of North America based on an analysis of several resource assessment data bases for 1912-84.

Figure 162.--Location of commercial harvests of weathervane scallop off the west coast of North America, 1981-83.

Table 38.--Total numbers of samples (hauls) and numbers of samples containing weathervane scallop by depth interval and geographic region from resource assessment surveys off the west coast of North America during 1912-84.

		Weat coast			Britiah Columbla			Southeast Alaska			Qulf of Alaska			Aleutlan Islands			Bering Sea			All areas combined		
	Depth (netera)	Total Haul	Dec.	\pm	Total Houle	Occ.	*	Totol Hauls			Iotal Heuls	Oce.	x	Total llaule	Oce.	x	Total Houls	Occ.	x	Total Haul:	Occ.	\%
	0.50	1614	10	1	119	-.	-	145	4	3	443	5	1	74		1	3113	\cdots	\cdots	5509	20	0
	51-100	2340	168	7	139	.-	.	488	3	1	2138	129	6	195	,	1	4190	10	0	9471	312	3
	101-200	2590	7	3	326	..	.	527	..	.	5036	73	1	623	2	0	2778	10	0	11895	160	1
	201.300	921	-	\cdots	250		.	399	.-	-	1451	7	0	244		--	256	..	.-	3522	7	0
All	301.400	439	-.	..	56		.-	191	--	..	246	125	..	.-	132	-	-	1190	\cdots	\cdots
	401-500	329	.	.-	11	-.	-	146	--	*	108	--	..	104	--	-	138	-	..	836	-	.-
occurrences	501-600	144	2	..	.	192	40	.-	.-	62	.-	.-	66	--	.-	505
	601-1000	321	.-	..	6	243	-	\bullet	60	-	.-	89	.	.-	134	--	-	853	-	--
	>1000	25	\cdots	\cdots	${ }^{2}$	\cdots	\cdots	9	7	0	\cdots	\cdots	2	\cdots	5	\cdots	-.	\cdots	-	${ }^{27}$	49	-
	total	8703	253	3	8 911	-.	.	2329	7	0	9522	214	2	1516	5	0	10808	20	0	33809	498	1

Figure 163.--Frequency of occurrence by depth interval by region for weathervane scallop off the west coast of North America based on presence or absence in samples from resource assessment surveys during 1912-84.

Pacific herring

Figure 164.--Location of commercial harvests of Pacific herring off the west coast of North America, 1981-83.

Pink salmon

Figure 165.--Location of commercial harvests of pink salmon off the west coast of North America, 1981-83; U.S. and Canadian catches.

Chum Salmon

Figure i66.--Location of commercial harvests of chum salmon off the west coast of North America, 1981-83; U.S. and Canadian catches.

Coho Salmon

Figure 167.--Location of commercial harvests of coho salmon off the west coast of North America, 1981-83; U.S. and Canadian catches.

Sockeye salmon

Figure 168.--Location of commercial harvests of sockeye salmon off the west coast of North America, 1981-83; U.S. and Canadian catches.

Chinook salmon

Figure 169.--Location of commercial harvests of chinook salmon off the west coast of North America, 1981-83; U:S. and Canadian catches.

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENTS

We wish to express our appreciation to those persons who provided extensive data sets for inclusion in our work. Dick Carlson of the NOAA/NMFS Auke Bay Laboratory at Auke Bay, Alaska, provided original data from Auke Bay Laboratory's coastal groundfish trawl surveys for Southeast Alaska. Jeff Cross of the Southern California Coastal Water Research Project in Long Beach, California, provided data files and raw forms from SCCWRP's coastal trawl surveys in the Southern California Bight. Acquisition of these two data sets greatly enhanced our maps and depth occurrence summaries. Lastly, we wish to thank Susan Farady for her assistance in final preparation of this report.

THIS PAGE INTENTIONALLY LEFT BLANK

REFERENCES

Alaska Department of Fish and Game (ADF\&G). [1985a]. Commercial catches of salmon by species and statistical subarea for Alaska, 1981-83. Computer printout compiled and provided by Carmine DiCostanzo, Chief, Computer Services Section, Alaska Dep. Fish and Game, P.O. Box 3-2000, Juneau, AK 99802.

ADF\&G. [1985b] Commercial domestic catches of groundfish by statistical subarea for Alaska, 1981-83. Computer file compiled and provided by Fritz Funk, Alaska Dep. Fish and Game, P.O. Box 3-2000, Juneau, AK 99802.

ADF\&G. [1985c]. Commercial harvests of herring by year, statistical subarea, and fishery 1981-83, 30 p. Computer printout compiled and provided by Carmine DiCostanzo. Chief, Computer Services Section, Alaska Dep. Fish and Game, P.O. Box 3-2000, Juneau, AK 99802.

Allen, M. J. and G. B. Smith. 1988. Atlas and zoogeography of common marine fishes in the Bering Sea and northeast Pacific Ocean. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 66:151 p.

Barner, L W. and F. H. C. Taylor. 1974. The offshore herring survey of southwest Vancouver Island in 1972 and 1973, GBR 72-4, GBR 73-1, and GBR 73-2. Fish. Res. Board. Can. Tech. Rep. 469, 69 p.

Beamish, R. J. 1976. Pacific hake and walleye pollock study, Strait of Georgia cruise, A. P. Knight. November 1820, 1974. Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1379, 15 p.

Beamish, R. J., C. Houle, and R. Scarsbrook. 1980. A summary of sablefish taging and biological studies conducted during 1979 by the Pacific Biological Station. Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1588, 194 p.

Beamish, R. J., D. Davenport, and R. Scarsbrook. 1976. Pacific hake and walleye pollock study, Strait of Georgia cruise, A. P. Knight. July 29-31, 1974. Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1374, 13 p.

Beamish, R. J., D. Eftoda, M. Smith, R. Scarsbrook, and R. U'ren. 1976. Pacific hake and walleye pollock study, Strait of Georgia cruise, A. P. Knight. May 5-14, 1975. Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1381, 65 p.

Bernard, F. R. (editor). 1982. Assessments of invertebrate stocks off the west coast of Canada (1981). Fish. Res. Board Can. Tech. Rep. 1074,39 p.

Brown, K., R. Berry, J. Lukas, and C. Carter. 1984. 1981 Pounds and value of commercially caught fish and shellfish landed in Oregon. Ore. Dep. Fish. and Wildl., P.O. Box 59, Portland, OR 97207,54 p.

Butler, T. H. and M. S. Smith. 1968. Shrimp sampling and temperature data obtained during exploratory fishing off British Columbia, 1966 and 1967. Fish. Res. Board Can. Tech Rep. 61, 92 p.

California Department of Fish and Game (CDF\&G). [1982]. California commercial fish landings by region - December 1981 (preliminary). Computer printout from Calif. Dep. Fish and Game, 1416 Ninth St., Sacramento, CA.

CDF\&G. [1983]. California commercial fish landings by region - December, 1982 (preliminary). Computer printout from Calif. Dep. Fish. and Game, 1416 Ninth St., Sacramento, CA 95814.

CDF\&G. [1984]. California commercial fish landings by region - December, 1983 (preliminary). Computer printout from Calif. Dep. Fish and Game, 1416 Ninth St., Sacramento, CA 95814.

Canada Department of Fisheries and Oceans (CDF\&O). 1982. British Columbia catch statistics by area and type of gear for 1981. Dep. Fish. and Oceans, Pacific Region, 410-555 W.Hastings St., Vancouver, BC V6B 5G3, 223 p.

CDF\&O. 1983. British Columbia catch statistics by area and type of gear for 1982. Dep. Fish. and Oceans, Pacific Region, 410-555 W.Hastings St., Vancouver, BC V6B 5G3.239 p.

CDF\&O. 1985. British Columbia catch statistics by area and type of gear for 1983. Dep. Fish. and Oceans, Pacific Region, 410-555 W.Hastings St., Vancouver, BC V6B 5G3,239 p.

Davenport, D. and R. M. Wallis. 1978. Arctic Harvester groundfish cruise No. 77-3, October 11-28. 1977. Can. Fish. and Marine Services Data Rep. 51, 16 p.

Davenport, D., J. E. Smith, U. Kristiansen, J. E. Peters, and S. J. Westreheim. 1971. The G. B. Reed groundfish cruise No. 71-1. June 9-29, 1971. Fish. Res. Board Can. Tech. Rep. 269, 27 p.

Ellis, D. V. 1967. Quantitative benthic investigations: II, Satellite channel, species data, February 1965-May 1967. Fish. Res. Board Can. Tech. Rep. 35, unnumbered.

Ellis, D. V. 1968. Quantitative benthic investigations: V, species data from selected stations. Fish. Res. Board Can. Tech. Rep. 73,314 p.

Fisheries Research Institute. [1989]. Summary of incidental catch data for Atka mackerel from the Fishery Research Institute's high seas salmonid tagging data base for 1956-1978, 1980, and 1982-1986. Computer summary provided by Katherine W. Myers, Fisheries Biologist, Univ. Wash., Fish. Res. Inst., School of Fisheries, WH-10, Seattle, WA 98195. February, 1989.

Gorbunova, N. N. 1962. Spawning and development of greenlings (family Hexagrammidae). In: Terpugovye ryby i vozmozhonosti ikh mezhokeanskoi transplantatsii T. S. Rass (ed.). (Greenlings: taxonomy, biology, interocean transplantation). Akad. Nauk SSSR. Tr. Inst. Okeanologii, p.121-185,. Israel Program for Scientific Translation, 1970; available from Clearinghouse Federal Science Technical Information (CFSTI, Springfield, VA 22161).

Harling, W. R., D. Davenport, and S. J. Westrheim. 1967. The G. B. Reed Cruise 67-1, February 1 -April 24, 1967. Fish. Res. Board Can. Tech. Rep. 22, 56 p.

Harling, W. R., D. Davenport, J. E. Smith, and R. Wilson. 1969. The G. B. Reed groundfish cruise No. 69-3, September 8-25, 1969. Fish Res. Board Can. Tech. Rep. 144, 35 p.

Harling, W. R., D. Davenport, J. E. Smith, and W. E. Wowchuck. 1970. The G. B. Reed groundfish cruise No. 70-3, September 9-25, 1970. Fish. Res. Board Can. Tech. Rep. 221, 35 p.

Harling, W. R., D. Davenport, J. E. Smith, N. C. Phillips, and W. R. Wowchuck. 1973. The G. B. Reed groundfish cruise No. 73-2, September 5-25, 1973. Fish. Res. Board Can. Tech. Rep. 424, 37 p.

Harling, W. R., D. Davenport, J. E. Smith, U. Kristiansen, and S. J. Westrheim. 1970. The G. B. Reed groundfish cruise No. 70-1, March 5-June 18, 1970. Fish. Res. Board Can. Tech. Rep. 205, 82 p

Harling, W. R., D. Davenport. J. E. Smith, W. E. Wowchuck, and S. J. Westrheim. 1971. The G. B. Reed groundfish cruise No. 71-3, October 1-29, 1971. Fish. Res. Board Can. Tech. Rep. 290, 35 p.

Harling, W. R., D. Davenport, R. M. Wowchuck, and-K. R. Weir. 1976. The G. B. Reed groundfish cruise No. 75-3, Octover 7-24, 1975. Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1371, 31 p.

International Pacific Halibut Commission. [1986]. Catch Statistics by statistical subarea for the Pacific halibut commercial fishery 1981-1983. Tablesprovided by IPHC staff, Univ. Sta., Box 95009, Seattle, WA 98105.

Leaman, J.-E. 1982. Catch and effort statistics of the Canadian groundfish fishery on the Pacific coast in 1981. Can. Tech. Rep. Fish. Aquat. Sci. 1124. 90 p.

Leaman, J. E. 1983. Catch and effort statistics of the Canadian groundfish fishery on the Pacific coast in 1982. Can. Tech. Rep. Fish. Aquat. Sci. 1226, 90 p.

Leaman, J. E. 1984. Catch and effort statistics of the Canadian groundfish fishery on the Pacific coast in 1983. Can. Tech. Rep. Fish. Aquat. Sci. 1312, 87 p.

LeBrasseur, R. 1970. Larval fish species collected in zooplankton samples from the northeast Pacific Ocean, 196569. Fish. Res. Board Can. Tech, Rep. 175, 47 p.

Levings, C. D. 1968. Report on the groundfish cruise of CGS G. B. Reed to Hecate Strate in February, 1968. Fish. Res. Board Can. Tech. Rep. 62, 41 p.

Levings, C. D. 1973. Sediments and abundance of Lycadopsis pacifica [Pices, Zoarcidae) near Point Grey, B. C., with catch data for associated fish. Fish. Res. Board Can. Tech. Rep. 393, 15 p.

Lukas, J. and C. Carter. 1984. 1982 pounds and value of commercially caught fish and shelffish landed in Oregon. Ore. Dep. Fish. and Wildl., P.O. Box 59, Portland, OR 97207, 53 p.

Lukas, J. and C. Carter. 1985. 1983 pounds and value of commercially caught fish and shellfish landed in Oregon. Ore. Dep. Fish. and Wildl., .P.O. Box 59, Portland, OR 97207, 70 p.

Mintel, R. J. and G. B. Smith. 1981. A description of the resource survey data-base system of the Northwest and Alaska Fisheries Center, 1981. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-18, 111 p.

Mintel, R. J. and G. R. Oda. 1983. User's guide to the (RACE0010) map program. NWAFC Processed Rep. 83-07, 140 p. Alaska Fish. Sci. Cent., 7660 Sand Point Way NE, BIN C15700, Seattle, WA 98115.

National Marine Fisheries Service. [1985]. Catches of groundfish in U.S. waters by foreign nation and by $1 / 2$ degree' Lat by 1 degree Long, 1981-1983. Resource Ecology and Fisheries Management Division computer files. Alaska Fisheries Science Center, 7600 Sand Point Way NE, BIN CI5700. Seattle, WA 98115.

National Oceanic and Atmospheric Administration (NOAA), 1990. West Coast of North America Coastal and Ocean Zone Strategic Assessment Data Atlas. Invertebrates and Fishes Volume. U.S. Dep. Commerce, National Ocean Service, Strategic Assessment Branch (now Strategic Environmental Assessments Division), and National Marine Fisheries Service, Northwest and Alaska Fisheries Center (now Alaska Fisheries Science Center). 45 plates and text.

Rutenberg, E. P. 1962. Survey of the fishes of the family Hexagrammidae. In: Terpugovye ryby i vozmozhnosti ikh mezhokeanskoi transplantatsii. T. S. Rass (ed.). [Greenlings: Taxonomy, biology, interoceanic transplantation], p. 1-103. Akad. Nauk SSSR. Trudy Inst. Okeanologii. Israel Program for Scientific Translation, 1962; available from Clearinghouse Federal Science Technical Information (CFSTI, Springfield, VA 22161).

Shaw, W., R. M. Wallis, F. W. Mottl, and S. J. Westrheim. 1978. The Freeport groundfish cruise No. 78-1, July 21August 11, 1978. Can. Fish. and Marine Services Data Rep. 112, 39 p.

Sigmund, N., R. J. Beamish, J. Fargo, C. Kingston, and M. Stocker. 1979. Exploratory bottom trawling for sablefish southwest of Vancouver Island, 1978. Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1517, 45 p.

Stocker, M., J. Fargo, and D. M. A. Bennett. 1980. Dover sole tagging, eastern Dixon Entrance, September 18-29, 1979. Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1565, 56 p.

Taylor, F. H. C. 1967. Midwater catches from the Queen Charlotte Sound and the open ocean adjacent to the Queen Charlotte Islands. Fish: Res. Board Can. Tech. Rep. 11, 44 p.

Taylor, F. H. C. 1969. The British Columbia offshore herring survey, 1968-1969. Fish. Res. Board Can. Tech. Rep. 140,54p.

Taylor, F. H. C. 1970. The British Columbia offshore herring survey, 1969-1970. Fish. Res. Board Can. Tech. Rep. 174, 74 p.

Taylor, F. H. C. and L. W. Barner. 1974. The herring survey of the Juan de Fuca Strait in 1971: report on the A. P. Knight cruise APK71-3,4,5,6, and 7 (July 22-December 12, 1971). Fish. Res. Board Can. Tech. Rep. 503, 72 p.

Taylor, F. H. C., L. W. Barner, and D. C. Miller. 1970a. The British Columbia offshore herring survey, 1969-1970. Fish. Res. Board Can. Tech. Rep. 190,47 p.

Taylor, F. H. C., L. W. Barner, and D. C. Miller. 1970b. The British Columbia offshore herring survey, 1969-1970. Fish. Res. Board Can. Tech. Rep. 213, 75 p.

Washington Department of Fisheries. [1985]. Commercial catches of fish and shellfish by statistical subarea and year for Washington, 1981-1983. A computer printout, October, 1985, provided by D. Ward. Wash. Dep. Fish., General Admin. Bldg., Olympia, WA 98504.

Westrheim, S. J. 1967a. The G. B. Reed groundfish cruise reports, 1963-1966. Fish. Res. Board Can. Tech. Rep. 30, 289 p.

Westrheim, S. J. 1967b. Catch rates, size composition, and sex ratios of Pacific ocean perch (Sebastodes alutus) caught in the eastern north Pacific Ocean (Vancouver Island, British Columbia to southeastern Alaska) by the G. B. Reed, August-October, 1966. Fish. Res. Board Can. Tech. Rep. 16, 32 p.

Westrheim, S. J. 1974. Explorations of deep water trawling grounds in the Strait of Georgia in 1974. Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1320.

Westrheim, S., J., D. Davenport, and W. R. Harling. 1977. The G. B. Reed groundfish cruise No. 77-1, March 8-30. 1977. Can. Fish. and Marine Services Data Rep. 40,35 p.

Westrheim, S. J., D. Davenport, W. R. Harling, and J. E. Smith. 1972. The G. B. Reed groundfish cruise No. 72-3, September 9-28, 1972. Fish. Res. Board Can. Tech. Rep. 345,28 p.

Westrheim, S J., D. Davenport, W. R. Harling, M. S. Smith, R. M. Wowchuck. 1969. The G. B. Reed groundfish cruise No. 69-1, February 11-27, 1969. Fish. Res. Board Can. Tech. Rep. 113, 23 p.

Westrheim, S. J., D. Davenport, J. E. Smith, and W. R. Harling. 1972. The G. B. Reed groundfish cruise No. 72-1, June 13-29, 1972. Fish. Res. Board Can. Tech. Rep. 328, 17 p.

Westrheim. S. J., C. W. Haegele, U. B. G. Kristianson, and N. A. Webb. 1970. The G. B. Reed groundfish cruise No. 70-2, August 7-20, 1970. Fish. Res. Board Can. Tech. Rep. 210, 15 p.

Westrheim, S. J., W. R. Harling, and D. Davenport. 1968. The G. B. Reed groundfish cruise No. 67-2, September 6October 4, 1967. Fish. Res. Board Can. Tech. Rep. 46, 45 p.

Westrheim, S. J., W. R. Harling, D. Davenport, and J. E. Smith. 1974a. The G. B. Reed groundfish cruise No. 74-3, June 4-26, 1974. Fish. Res. Board Can. Tech. Rep. 478, 59 p.

Westrheim, S. J., W. R. Harling. D. Davenport, and J. E. Smith. 1974b. The G. B. Reed groundfish cruise No. 74-4. Fish. Res. Board Can. Tech. Rep. 497, 37 p.

Westrheim, S. J., W. R. Harling, D. Davenport, J. E. Smith, and N. C. Phillips. 1973. The G. B. Reed groundfish cruise No. 73-1, June 5-July 26, 1973. Fish. Res. Board Can. Tech. Rep. 410, 51 p.

Westrheim, S. J., W. R. Harling, D. Davenport, and R. M. Wowchuck. 1975. The G. B. Reed groundfish cruises 75-1 (April 8-24) and 75-2 (July 8-24) (Data Record). Fish. Res. Board Can. Fish and Marine Services Manuscr. Rep. 1367.

Westrheim, S. J., J. E. Smith, W. R. Harling, U. R. Kristiansen, and J. E. Peters. 1971. The G. B. Reed groundfish cruise No. 71-2, August 2-September 3, 1971. Fish. Res. Board Can. Tech. Rep. 278, 15 p.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A: Methodology for combining catch information from various trawl types to map relative abundance.

Correction factors were needed to relate catches from different sized and designed trawls for mapping relative abundance. Catches from all trawl types used in NMFS resource assessment surveys during 1980-84 were related to a standard: a "noreastern" demersal trawl (code number 161 in the RACE Division data base). The basis for this relationship was a simple ratio between the effective fishing area of a trawl (i.e., width and height of the trawl's mouth while fishing) and that of a standard trawl.

Regardless of net size, some trawl designs are more effective than others at capturing different species groups, and additional catch adjustments were needed. These adjustments were calculated using results from fishing power experiements conducted by NMFS in i983 (Craig Rose, AFSC, pers. commun., August 1988) and applying assumptions to that information.

Several results of the gear experiments were pertinent to our correction factors, such as:
-Flatfish catch rates between trawls equipped and not equipped with roller gear differed significantly;
-When footropes were the same length, a trawl with a high mouth opening caught similar amounts of Pacific cod as a trawl with a lower vertical opening, suggesting that Pacific cod were close enough to the bottom to be equally available to both trawl types;
-When footropes were the same length, trawls with high\& mouth openings caught greater amounts of walleye pollock than trawls with lower vertical openings;

- When footropes were the same length, trawls without roller gear caught more flattishes and crabs than trawls with roller gear by a factor of 1.36 ; and
-Bottom trawls with and without roller gear caught similar amounts of Pacific cod and other semidemersal roundfishes (e.g., sablefish, lingcod, etc.).

Several assumptions were developed from results of the gear experiments. First, catches of semidemersal and pelagic species were assumed proportional to the area of a trawl's mouth opening (i.e., the effective trawl width X the effective trawl height). For example, the standard "noreastern" trawl with a mouth opening of $92.4 \mathrm{~m}^{2}$ was 4.4 times more effective at catching pollock than a trawl with an opening of only $20.7 \mathrm{~m}^{2}$ Second, the effective fishing width of a pelagic trawl equalled its effective fishing height (unless otherwise specified). Third, a bottom trawl without roller gear opened an average width of 0.66 of its headrope length. And lastly, a bottom trawl with roller gear opened an average width of 0.56 of its headrope length.

Table A-I is a listing of information for all gear types with catches that were incorporated into the relative abundance maps.

Table A-I. Summary of Information associated with. fishing power factors calculated from 1980 lo 1994 NMFS resource assessment survey data for mapping relative abundance,

${ }^{* *}$ Numbers in shaded blocks are approximate and based on assumptions listed in this appendix.

Appendix B: Listings of data sets.

Table B-I. Log of NMFS-AFSC resource assessment surveys.
Table B-2. Summary of data from Auke Bay Laboratory resource assessment surveys.
Table B-3. Summary of data from Canada Department of Fisheries and Oceans surveys (in addition to data already in RACEBASE).

Table B-4. Summary of data from Alaska Department of Fish and Game surveys.
Table B-5. Summary of data from Juneau Exploratory Fishing and Gear Research Base surveys (shrimp pot work is listed at end).

Table B-6. Summary of data from Seattle Exploratory Fishing and Gear Research Base surveys.
Table B-7. Summary of data from Southern California Coastal Water Research Project surveys.
Table B-8. Summary of data from NMFS and federa/state cooperative scallop surveys.

Table B-1. Log of NMFS-AFSC resource assessment surveys.

			Begin				N. Latitude		W. Longitude		No. of samples.
Vessel	Cruise No.	Year	Mo.	Day		Day	Min.	Max.	Min.	Max.	
Chapman	802	80	\%	1	10	29	3280\%	38.20	191940	123.3:	93
Chammat	812	81	\&	\%	\$	24	425%	4470	12462	\%2493	20
Chapinar	813	81					54.69	81.63.	16099.	7790\%	230
Chapman	844	8)	9				53:65	554.4.	15019	16698	5
Chapman	823	82	4.	\%	5	30	5, \% 1.	56\%7\%	16\%2 2	14.02	25
Chapman	822	82	5	11	5	28	55.46	57.81	160.52	166.38	79
Chapman	823	82	5	1	7	30	55.00	60.66	158.32	174.14	149
Chapman	824	82	8	8	8	31	56.26	59.51	161.47	171.10	15
Chapman	825	82	9	11	9	18	55.45	56.39	163.20	166.01	31
Chapman	826	82	9	1	10	30	53.70	56.22	162.76	167.24	85
Chapman	834	8	3	4	\%		S64 4	S8423	15357\%	5654.	52
Chapmar	832	83			4	31.	56, 6%	57.	149\%\%	15538	14
Chamars	833	时	\%		8	3).	5550.	6400	15984.	180800	190
Chanman	34	83			9		52\% 25	547\%	165%	174.45	63
Chapman	844	84	8	1	\% 8	30	5498	8401.	15933\%	778\%8	253.
Chapman	844	84	8	29	B	30	55.19	55.41	161.53	161.98	13
John N. Cobb	15	53	3	1	4	31	59.42	59.92	139.62	140.25	79
John N. Cobb	18	54	2	1	4	31	59.50	61.12	145.67	148.62	120
John N. Cobb	20	54	7	1	9	31	59.22	61.12	144.87	148.43	178
John N. Cobb	39	58	7	1	8	31	56.92	59.60	150.35	154.92	109
SOAn N Cobo	43	59	8	8	8	30	6533.	69588	16380	16888	59
Johns cobbe	44	59	10			31	59397	6103	14587	150:22	O\%
30月INCObb	52	61	\%	4		30	59%	50	144.55	148: 8	98
\%otn N Cobe	54	82	4	\downarrow	5	31.	$5 \% 33$	6023	144%	150\%3	82
Sohn N cobb	725	72	3	10	5	3.	\$64\%.	57\%17	15270:	153,83	60
John N, Cobb	726	72	7	1	8	31	56.45	57.95	151.38	155.00	62
John N. Cobb	733	73	5	1	6	31	56.80	58.77	151.45	155.35	45
John N. Cobb	734	73	8	1	10	30	56.23	58.82	150.03	156.70	82
John N. Cobb	742	74	4	3	5	30	34.10	41.42	119.40	124.45	60
John N. Cobb	744	74	7	1	8	31	53.03	54.50	162.23	167.87	60
उपन\# 680	52	\%	\%	1	5	30	33.88	483	1 B 6	12448:	89
John N Cober	5_{53}	75	\%	1	8	31	55\%	5997	44787	17728	98
John U, Oobe	754	75	\%	2	10	28	3695	49.92.	12220	17742	115
30hn 4 Cobs	\%	76	4	4	5	29	54, 3	5943	130.45	139.95	87
OHnN Cobb	763	76	\%	3	\%	23	3830	545\%	12182	129.65	100
John N. Cobb	773	77	7	1	8	31	54.88	57.65	133.92	136.47	27
John N. Cobb	783	78	6	7	8	29	55.40	59.67	134.90	142.87	80
John N. Cobb	792	79	6	3	9	29	43.45	57.85	124.37	137.05	197
John N. Cobb	802	80	6	6	9	29	43.38	57.85	124.36	137.06	196
John N. Cobb	812	81	6	2	9	30	43.45	58.27	124.36	137.06	216
30hn V Cobo	813	81/	\#	10	1	2 2	3259	3244	11853	19,70	25
fohn NCOBb	82	82	\$	8	8	3)	54.56	5786.	13285	13706:	74
Othin COHb	824	82	10\%	\%	H\%	3\%	326\%	3423	119.53	123.59	48
John U Coblt	833	83	4	\%	\% 4	20	S817	58.6	13494	135668	89
	833	83	5.	2	\%	30.	54,54	67887	13283	137.07	90
John N. Cobb	834	83	10	13	10	28	43.44	47.89	124.37	125.37	40
John N. Cobb	841	84	5	3	7	31	54.55	58.42	132.80	137.07	185
Pacific Harvester	801.	80	6	1	8	31	53.90	60.30	135.79	164.50	208
Pacific Harvester	811	81	6	7	7	30	53.90	60.30	135.80	164.52	193
Commando	713	71	6	,	7	30	56.48	57.65	151.87	153.82	184
Cormmando	115	71	9	\geqslant	10	30,	4425	45	12888	124\%	108
Commando	724	72	9	2	-	13	4275:	4438.	124, 5	24833	eg
Commando	732	73	9.	\downarrow	\%	3\%	583\%	5\%00	15237	153:80	52
Commando	735	73	s.	\%	10.	30	4332	4618	123.88	12475	102
Commando	749	74	${ }^{3}$	\%	10.	8\%	42%	4482	124 \%	124888	9s:
Commando	754	75	9	,	10	30	46.28	48.35	124.23	125.28	82
Commando	771	77	7	1	9	31	34.05	48.48	119.30	125.70	288
Mary Lou	801	80	7	5	9	28	36.80	49.55	121.87	127.23	293
Calit. Horizon	791	79	4	18	4	27	46.27	48.32	124.38	125.73	67
Washington	791	79	4	1	5	30	45.40	46.33	124.35	124.80	6

Table B－1．Log of NMFS－AFSC resource assessment survey（Continued）．

Vessel	Cruise No．Year		Begin		End		N．Latitude		W．Longitude		No．of samples
			Mo．	Day		Day	Min．	Max．	Min．	Max．	
Wu\％tita	723	79	4	9	\％ 4	¢\％	44．4\％	45930	13423	4248\％	\％
C A ARed	836．	83				31	54， 47	59886	13458	48：50．	68
G） F fied	637	63					55，90	5832	14883	75453	7
C．\＃Hedd	648	64	8				5312	5585	154.95	F67\％	40
CB，fied	652	65	2	44	2	28	56． 27	59，50	14045	15292	34
G．B．Reed	653	65	仡	1	－	31	54.69	57.87	134.00	136.88	39
G．B．Reed	662	66	8	1	9	31	51.27	56.82	128.90	135.98	43
G．B．Reed	672	67	9	25	9	28	55.94	56.32	135.08	135.49	42
G．B．Reed	701	70	3	7	5	18	54.04	59.63	133.47	142.57	71
Sunset Bay	792	79	7	1	8	31	56.91	61.84	171.03	178.83	123
Discoumg\％Bay	78%	76	\％	\＄	$\stackrel{1}{4}$	\％	54．33	6447	\％ 6	3798\％	176
OCban leaders	82\％	82	¢				42 －8	4467	1240	424．93．	10
Oregon	72	ね	4				56.57	5730	15450	15348\％	88
Origon	714	71	7		8．	31	54.67	58．68．	16030	170．25．	53
Diegon	722	72	5	11	寿	31	54．63．	58．67	15960	168． 8%	103
Oregon	723	72	8	1	9	31	54.10	55.87	158.92	162.65	103
Oregon	－734	73	7	1	8	31	54.65	58.00	158.97	165.83	94
Oregon	735	73	8	1	10	31	54.38	56.40	157.20	162.68	145
Oregon	741	74	4	15	5	22	56.55	57.08	153.02	153.78	40
Oregon	742	74	6	1	8	31	54.63	57.67	161.58	172.53	101
9regon	43	74	9	\％	10	30	54.37	56\％ 57	15763．	16310：	177
Orsgor	75	75	4	1	5	28	5780	58．65．	15003	15255	58
Oregon	5 52	75	6		8		54.67	5802	158．33．	17267．	155
Orion	753	75	¢	1		31	53473	56.57	15785	180．52．	167.
Orgon	762	76	5	4	8	31．	54.67	5833，	158．35．	172．5\％	188
Oregon	763	76	9	2	10	30	54.45	56.57	157.63	163.28	156
Oregon	770	77	5	1	6	31	55.40	55.67	163.53	163.90	22
Oregon	773	77	6	1	8	30	54.67	58.68	158.32	172.98	173
Oregon	774	77	8	1	9	31	54.45	56.57	157.58	163.20	146
Oregon	781	78	4	2	5	30	59.67	60.87	145.85	148.42	－70
9regor	782	78	\％	\％	\％	31．	54，53	5\％\％．	159．05	470．85\％	14
¢rgaon	783	78					5350\％	86．55．	15763	16720	172
O200\％	791	79		\％	4	28	\＄0．93	4838．	12480\％	12570	51
	792	79	5	1	8	31．	54，98	58．00	15895	47242	165
O\％sgon：／\＆	802	80	5	1	$\stackrel{ }{ }$	31／	546\％	59，6\％	162%	17．60．	12\％
Oregon	803	80	8	1	9	31	53.43	55.59	158.82	167.53	92
Pacific Lady	703	70	8	1	10	31	58.33	61.12	146.15	152.40	107
Mark I	733	73	6	1	7	30	54.67	57.67	164.58	171.53	63
Anna Marie	743	74	6	1	7	30	54.62	58.72	158.27	171.57	97
Anna Marie	751	75	8	4	9	31	54.62	61.68	158.07	178.48	224
Anna Mana	76\％	78	4	\％	6	S\％	54，53．	\＄915	15810	1757	164
North Pacilic	\＄51	75	5	\％	8	31	59，17\％	80，28	140%	44780．	148
Palsan Maties	751	75	＊＊	4	9\％		54，82．	61880	15802	\＄7875	2清
Palsan haries	76\％	78	4	1	6	30\％	54，85．	59， 83	159\％ 5 5．	17473	219
PatSanMarto	\％$/ 162$	78	8	§ ${ }^{\text {g }}$	9.	24	8625	3158	121．98\％	12993\％	2%
Pat San Marie	801	80	7	5	9	28	36.82	49.71	122.11	127.45	318
Pat San Marie	811	81	4	2	5	30	53.81	57.68	154.31	＇163．96	120
Pat San Marie	812	81	5	5	6	31	55.05	59.43	133.74	142.00	152
Pat San Marie	821	82	5	1	8	31	55.01	62.63	158.92	177.58	218
Smarag	771	77	7	1	8	31	53.93	58.75	157.80	166.63.	230
Milerfirsman	75%	75	¢	\％	10	31	74，5\％	80， 38	159．63	1819\％	219
Minfy forman		7\％	4				54.80	59\％\％	150872	－ 4.55	1\％
Mller freensin	762	760	9		10	S0．	83.07	88.30	18425．	17． 85	268
Militytentan	7833	780	\＃		10．	30\％	6307\％	68．18．	16130	88920\％	3s
Millar rroman．	\％	\％	\＆	\％	\％	3	\＄5 4\％	584\％	14003	15652．	156

Table El．Log of NMFS－AFSC resource assessment survey（Continued）．

Vessel	Cruise No．	Year				Day	N．Latitude		W．Longitude		No．of samples
Miller Freeman	772	77	7	1	9	31	34.10	49.75	119.67	127.37	116
Miller Freeman	780	78	2	3	3	28	54.58	59.95	165.77	177.20	41
Miller Freeman	781	78	3	21	3	24	57.62	58.22	150.02	151.70	28
Miller Freeman	782	78	9	10	9	17	56.65	57.08	152.53	153.30	7
Miller Freeman	783	78	3	1	4	31	56.07	58.10	149.64	156.16	55
W）	785	78	9	栓䊽	\％	8\％	55.6	60.18	14467	¢55\％\％	63
Mildeb 510 man	\％O\％	78	1	8	4	3\％	55.57	58.14	13480	155，49\％	105
Hiller breman	792	7898	7		8	\％	63517	64，	184．53	16985\％	\％8
Miligr fregnind，	793．	78	\％		\％	30．	52.33	60.98	16650	178．85\％	， 85
Mithorstromant	794	79	8	2	10	30.	4785	49，20	12408	स26\％\％	34
Miller Freeman	800	80	1	1	2	30	54.28	59.67	165.78	178.08	17
Miller Freeman	801	80	2	1	4	29	55.18	58.18	152.44	156.68	204
Miller Freeman	803	80	7	1	9	31	36.98	49.32	122.41	127.13	77
Miller Freeman	804	80	11	9	11	20	54.68	58.28	133.49	135.74	42
Miller Freeman	811	81	2	11	2	24	54.12	57.01	164.18	170.10	70
Mlarseman＊	88	8%	\＄		4	29\％	5589	5812	5408	15620	54
Mithertremmanto	810	Q1	4	\％	5	20\％	5558	58．06	15231	155．96．	＋ 1148
	8.4	81	5	8	\＆ 5	¢7	55.91	57．09	154，45	15400	－ 175
Millortieembry	85	8%	\％		10	30\％	55．67．	6308	16086	48427	93
M	816	80	10	1	＋	20\％	53.5	574	16352	40867	4，
Miller Freeman	817	81	11	13	11	28	55.52	56.65	134.31	135.84	69
Miller Freeman	821	82	5	1	6	31	56.12	56.39	135.05	135.18	35
Miller Freeman	822	82	9	1	9	15	56.50	64.50	161.49	174.74	107
Miller Freeman	823	82	9	1	10	30	54.25	57.40	163.44	170.80	54
Miller Freeman	830	83	1	1	2	31	56.12	58.76	134.11	135.16	14
Millerfeeman	88	83	\％		－	24	5372	5466	159，68	17016	62
Miler frempars	832	83	\％	6	4	31	5343	58.50	16279	16583	45
Allatersemars	830	83	7	1	8	31	5120	5231	17467	182．68	99
Miligr + erman	844	84	2	9	2	24	54.28	56.56.	15207	160．5\％	8 \％
Mfitiorreomian，	842	84	3		4	31	5615	60.7	14685	15605	48
Miller Freeman	847	84	10	20	10	28	54.79	58.11	130.94	135.06	27
Pacific Raider	762	76	8	7	9	28	36.27	51.57	121.93	130.05	77
Pacific Raider	771	77	7	1	9	31	34.45	48.43	120.70	125.65	237
Dominator	821	82	6	1	8	30	52.81	62.30	163.84	180.06	75
Dominator	841	84	9	1	10	28	32.39	42.27	118.89	124.91	100
Noreosel	78 \％	78	－		9	31	5412	59.55	1368	\＄55．05	\％9
NorPDics	790	\％9	5		8	31	53.68	59.90	134,92	18515	215
	82	82\％	6	6		29	53.76	6029	13580	164 88	178
Qaviostar Lordan	775	77	－	3	8	30	39．83	43，85	12400	124．75	85
Discoverar, ，	$\% 1$	\％7	8	2	8	31	5508	58.25	15808	1765	＋
Heidi－J	781	78	6	1	7	30	55.00	60.25	163.07	175.27	58
Heidi－J	782	78	7	1	9	31	54.23	59.30	131.10	155.67	105
Paragon II	781	78	6	1	8	31	54.90	61.00	158.95	178.25	202
Paragon II	791	79	5	1	8	31	54.82	63.65	157.98	178.58	339
Sea Hawk	781	78	7	1	8	31	55.94	57.78	158.07	161.79	488
Erefpor，+ ，	\％ 8 \％\％＊	78．				8.	54.02	5625	16098	13497	\％+8
Ooentranestor	80\％	8 Co	5			31	$54 \% 8$	6160．	158\％30	17872	259．
Oceartatheste\％	802		\％		8	S	5230	54.87	16523	17090	的 +88
Oceandratuester	814	8f	8		8	3%	55，09．	59．78．	13409	15262	＜ 2220
Ocmar tarmsiers	8 P \％	82	2	2	S	S0\％	5226	5512	16423	17390	\％148
New Hope	601	60	9	1	10	30	54.75	58.87	133.80	138.13	37
Yaquina	621	62	7	2	8	31	57.18	58.78	148.55	152.05	63
Yaquina	622	62	8	1	10	29	58.95	60.78	144.27	150.48	92
Yaquina	632	63	7		9	31	55.67	60.27	146.87	155.68	229
John R．Manning	631	63	5	1	6	31	58.20	60.02	134.43	144.55	85

Table B-1. Log of NMFS-AFSC resource assessment survey (Continued)

Vessel	Cruise No.	Year	Mo.			Day	Min.	Max.	Min.	Max.	samples
M1/3B Manang	63	6\%	\%	\%	8	31	58\%7	60.08	14833	15085	79
30\%H\%P. Maming	682	68	7		9	31\%	6663	58.68	15\% 30.	456,42	102
Anhilifiliens\%	80.	80	9	9	9	13	4700	47.00	12500.	\%2500	8
Quedt Viotiz	80\%.	80	8		8	21.	40.00	40.00	124.50	12450	27
Afasta:	81	8 \%	5	*	\%.	81.	54,68	50,67	158.36.	170.6\%	178
Alaska	812	81	8	1	9	31	55.26	58.29	151.25	160.94	138
Alaska	831	83	6	1	8	31	54.68	60.99	158.33	177.56	190
Alaska	832	83	8	11	8	12	55.21	55.42	161.56	161.98	12
Alaska	841	-84	6	1	8	30	54.69	61.00	158.97	174.13	209
Paragon 1	642	64	6	1	9	31	53.55	58.65	150.83	170.13	308
Wariorli	831	BS_{3}	\geqslant	3	9	31	36.81	48.86	12186	\$28.35	277
Nordford	83%	83		1	9	3\%	36\%75	4926	12209	126.79	319
Absobiffor	80%	80	9	9	\%	23	57393:	5975	139868	75394:	95
Fiesolufion	81/	81	9	3	10.	30	58774.	58,33	15, 24	155.52	141
Commandor	80%	80	E	1	¢	31.	5504	57\%\%	15552	162 17	131
Royal Baron	801	80	8	2	9	30	56.73	58.20	152.16	154.92	76
Royal Baron	821	82	B	1	9	31	56.22	58.33	152.16	158.29	145
Half Moon Bay	801	80	7	2	8	31	51.24	52.60	172.89	186.62	129
Hall Moon Bay	841	84	9	2	10	30	43.09	46.24	124.17	125.03	320
Steller	811	81	5	: 19	5	28	56.70	58.07	134.44	134.90	32
Gondrssmo	881	88	8	$\stackrel{ }{1}$	9	91	40.43	48.89	12426	12647	38
Yuing Queer	884	88	6		8.	30	5\% 43	59	14556.	76974	270
Muniels	841	84	6	\%	8	31	55.28	6028	14468	\$57\%44	198
Bluewaters	791	79	9	21	9	28	54, $=0$	5455	13.04	13136:	49
Kavachimarom	66%	66	5		7	91	51s3	588\%	16028.	18057	184
Nisshin Maru	671	67	7	2	9	29	51.23	61.03	160.22	195.25	106
Chosui Maru	681	68	6	1	7	30	55.13	62.97	160.25	172.25	180
Yoko Maru	691	69	6	1	9	31	51.25	61.95	159.77	187.30	287
Inase Maru\#3	701	70	7	1	8	31	55.15	61.38	160.25	172.23	143
TanshuMaru	711	71	5	1	6	31	54.62	59.87	160.23	175.75	230
Wakhtimalutz	73\%	78	5	$\stackrel{1}{2}$		24	54.75.	65.7	15850	17950	154
Stiunye Mary	74.	74	5			31	54560	5912	16227	73488	86
Shunyomif	75\%	75	5	\%	7	31	54.62	60.08	10\%80	77828	123
Shuryo Marts	75\%	78	5	1		31	54\% 60	6012	164.77	178.25	104
Fonkinu\%	78\%	78	6	1	7	30	52.52	60.45	16752.	188.32	78
Yakushi Maru\#21	791	79	6	2	7	30	54.32	59.90	160.35	178.95	455
ShotokuMaru\#35	791	79	6	1	8	31	57.00	63.33	166.32	179.47	341
Ryoan Maru \#31	811	81	7	1	10	31	54.10	60.91	165.48	179.80	269
Ryujin Maru \#8	821	82	7	1	11	31	54.08	62.61	165.41	179.63	401
Hatsue Maru \#62	801	80	7	1	11	31	51.32	56.41	165.11	189.27	217
Qablef, Marm	847	8	7	§	18	31	5243	\$9\%5	4,33	169\%4	955
St Wicharal	688	61	5			30	$54 \% 9$	58,50	$15 \% 40$	168560	268
SUMucheef	619	61	B		1	30	56.10	5B. 90	151.00	15500	402
\$ Wherasy	627.	62	2			30	5380	58.75	14872	164.58	462
StMucheog	628	62	-	\&	8	So	577\%	6005	142\%	15050	140
St. Michael	629	62	9	1	11	27	56.85	59.75	140.25	151.75	290
St. Michael	637	63	1	1	3	25	55.85	60.25	142.25	155.50	328
Morning Star	618	61	5	1	7	31	53.65	58.93	151.20	165.02	293
Morning Star	619	61	8	1	11	31	53.63	58.27	151.47	165.05	403
Morming Star	627	62	2	1	4	30	53.63	58.77	148.88	165.03	480
Western Giger	828	62	6	\%	8.	30	57,59	608S	44.\%5.	15045	188
Wespam fiem	629	62	9	\#	12	26	57867	80,32	14033.	16 ${ }^{\text {4 }}$ 48	307
Westendyyor	837.	63				So	578.	60.25	187880.	158.62	875
Forcenskiolus		57	\%			31	53,7\%	55,50	160 32.	\$66.50	61
Tortamskold	\% ${ }^{\text {a }}$	57	Q	${ }^{6}$	9	so	53\%3	55.80	15980.	16652	S6

Table B-1. Log of NMFS-AFSC resource assessment survey (Continued)

Vessel	Cruise No.	Year	Begin		End		N. Latitude		W. Longitude		No. of samples
			Mo.			Day	Min.	Max.	Min.	Max.	
Tordenskjold	611	61	6	1	9	-30	57.85	60.02	136.75	150.53	207
Tordenskjold	612	61	9	17	9	25	58.82	59.20	152.05	153.18	25
Tordenskjold	651	65	6	1	8	31	54.75	59.25	. 158.50	169.25	247
Tordenskjold	731	73	6	18	6	29	54.67	58.00	159.32	165.00	39
Tordenskjold	741	74	6	2	6	10	54.65	58.03	159.30	165.00	45
Fordonstiody	76%	76	6	\%	\%	\%\%	54,	58008	15928	\$85.95	\%
Fordenslyble	77	7	5	\%	6	19.	5453	58.02	158.52	886.05	48
Fordensloady	\#2	\%	8	1	9	31.	45.38	4632	12413	124 277	76
Torounskotay	78%	78	-	L	8.	31	52.63	60,30\%	130822	156.28	238
Don Emards	70%	70	5	\%	6.	31.	\$4,73	58375	15925	165.23	104
Don Edwards	711	71	6	1	8	31	53.85	59.07	159.25	174.00	152
Ocean Star	721	72	6	6	6	27	53.37	58.00	160.00	167.83	70
Arthur H	618	61	5	1	7	30	54.65	59.08	150.73	158.83	298
Arthur H	619	61	8	1	11	31	54.42	58.20	$\underline{151.42}$	160.52	404
Arthur H	627	62	2	1	4	30	53.65	58.73	148.50	164.83	476
Athur	628	62	${ }^{\circ}$	\%	B\%	30	5797	$60 \% 7$	13785	14632	192
Artur ${ }^{\text {a }}$	629	62	\%		10	19	58:27	\$9,43.	13728	44017	260
Athut	63%	63	5	*	8	\$0.	54,50	58.50	159.00	\%68.75	100
Atrurd	637.	63	\%	1	,	1%	55,67.	58.05	151.73	155.50	46
Athur	66.	66	6	1	8.	30.	54.75	60.00	158.00	17200	109
Harmony	671	67	5	-	7	31	54.75	62.50	158.75	170.00	159
Harmony	681	68	6	1	7	30	54.68	61.00	159.25	174.00	101
Tonquin	691	69	6	1	6	25	54.58	58.75	158.75	165.25	66
Siedleckj	772	77	7	1	9	31	39.07	59.95	123.78	150.85	137
Ekvator	801	80	1	1	12	29	56.38	62.48	162.99	177.29	399
Posiden	84/	84	4	1	5	30.	43,09	4596	14418	12499:	86
Ob Daes San	8.11	8%	7	\downarrow	8	3 ,	56,48.	60, 17	13784	153.05	94.
OnOaeSan	821	82	8	1	10	So.	55:96	60.00\%	1459\%	154.24.	87
Shantr	813	81	3	\%	5	30.	5412	5782	151500	161884	182
Mysodmy.	821	82	4	1	7\%	31	5186.	59,40:	148.07.	1892\%	33.
Milogradova	831	83	4	1	5	30	53.33	58.23	150.01	166.34	77
Milogradova	832	B3	6	1	8	31	54.66	61.98	158.37	178.96	349
SRTM 8459	821	82	6	1	8	27	55.79	65.00	163.92	189.17	217

Table B－2．Summary of data from Auke Bay Laboratory resource assessment surveys．

Vessel			Begin		End		N．Latitude		W．Longitude		No．of samples
	Cruise No．	Year	Mo．	Day	Mo．	Day	Min．	Max．	Min．	Max．	
Mun迷	693	69	\％\＃\％\％	8	\％	\％	5．85\％	5817	36008	13057	15
Marted	692	69	\％ 2	9		13	57488	58.32	135：52	4Sbi6\％	5
Marrell	703	70	5．	27	\％	28	5\％86	58.15	136506	430333．	9
Muroul	702	70	8	26	8	27	56，28	5637	13465	73480	5
Murreill	\％11	7	3	17	\％ 3	19	5626	56，888	184．23．	1847\％	18
Murte II	712	71	4	13	4	17	57.38	58.12	135.59	136.46	10
Murre II	713	71	5	19	5	25	56.64	57.04	134.86	135.34	34
Murte II	714	71	9	1	9	8	56.28	58.15	134.65	136.46	20
Murre II	721	72	4	24	4	30	56.10	58.15	134.64	136.46	29
Murre II	731	73	4	10	4	11	58.32	58.37	134.67	134.72	12
M1720	741	74	4	18	\％	25	5833	58.35	1346%	\＄3．688	4
Mutsel	742	74	2	7\％	为	25	58，33	583\％	13486	\＄4．87\％	8
Murre：l	743	74	\％3	14\％	\％	14	5833	5837．	134.86	134688	3
Murre！	744	74	12 。	12，	\＄2	18	58，24	58.37	134%	च4\％${ }^{\text {a }}$	11
Murietl	751	75	\％	29.	，	29	b8333	b8， a \％	134.66	134，67．	5
Murre II	752	75	2	6	2	B	57.74	57.88	135.19	135.58	8
Murre II	753	75	3	20	3	27	58.33	58.75	134.66	135.16	5
Murte II	754	75	4	17	9	24	58.24	58.50	134.66	134.83	6
Murte II	755	75	9	17	9	19	58.24	58.50	134.64	134.95	8
Murre II	756	75	11	13	11	19	58.33	59.30	134.66	135.50	6
Murifl	761	76	3	23	\％ 3	30	58．2\％	58．37	13455	13472	8
Munt	762	76		12	\％ 4	14	56844	50.44.	13478	144．812	6
Merrell	763	76	5	11	5	16	58333	583\％	13468	134．70：	3
Muro Il	764	76	\geqslant	2%	7	28	5719	57\％	13400	13429	5
Mure 1	765	76	10.	19	to．	20	60\％20	58：33	13460	134\％3：	\％
Murte II	766	76	11	17	11	18	58.33	58.38	134.64	134.67	6
Murre II	771	77	1	6	－ 1	7	58.26	58.33	134.33	134.68	3
Murre II	772	77	3	16	3	22	58.33	58.53	134.67	134.86	7
Mure II	773	77	4	5	4	12	58.37	58.47	134.67	134.97	5
Murre 11	774	77	5	17	5	19	58.20	58.47	134.61	134.97	5
Mare	775	77		13	5	20	57488	58．35	13585	136．88	\％ 24
Murs \ddagger	\％$\%$／ 776	77	9	4 ，	析	17	57\％ 74	57．98．	13514	135．8\％	\％
Murell	\％ 2 ／ 781	78	4	H／	\％	12	5833	58.50	134．56．	134，82．	3
Mursil	782	78	相	6\％	5	9	5791	5837	134：67．	136．33．	${ }^{6}$
Muriel	\％ 2.4783	78	6	15.	6．	20	5833	5933．	134.64	184\％7\％	7
Murre II	784	78	10	4	10	26	57.74	58.61	134.64	135.81	26
Mure II	785	78	12	14	12	15	58.33	58.37	134.64	134.67	4
Murre II	791	79	3	7	3	7	58.33	58.37	134.67	134.67	4
Murre II	792	79	4	16	4	17	58.16	58.37	134.17	134.67	8
Murre II	793	79	5.	16	5	17	58.18	58.42	134.23	134.70	8
More\％	\＃\＃\＃\％ 194	79			10	16	56，28	5837\％	13.65	347\％	9
Mund	801	80	\％	15．	1	18	58，33．	58.49	134，60．	134883	10
Morrell	E02	80	8	14	4	5	5817．	58．37\％	13424，	13470．	7
Mumell	803	80	5	\＄	5	\％	5830\％	58．33．	134.66	13478	6
Muneel	80\％	80	－	17.	\＄	18	882\％	58037．	434，60．	18467．	$\stackrel{3}{ }$
Murte II	805	80	9	3	9	5	58.17	58.37	134.21	134.69	7
Murre II	806	80	10	1	11	31	57.92	58.33	134.21	136.46	13
Murre II	807	80	11	24	11	25	58.17	58.33	134.21	134.70	6
Murre II	811	81	1	12	1	16	58.17	58.35	134.21	134.71	9
Murre II	812	81	2	9	2	13	58.17	58.33	134.21	134.70	12
Morre	815	8	4	\％	\％ 4	10	58817	58， 18	134，	134． 26.	8
Murie	814	8\％	5	5．	5	26	58， 17	58，33	13407	13470	4
Murrel	815．	8	6	4．	6\％	4	5830：	5833	134，65\％	134． 0	4
Mumbell	816	8．	7	15	7	22	56\％\％\％	57\％9\％	\＄35，44	\＄36．80\％	20
Mureo：	817．	8．	12．	8.	12.	10	5930\％	58，37	13468．	134\％\％	7.
Mure II	821	82	3	3	3	5	58.25	58.37	134.66	134.71	11
Murre II	822	82	5	7	5	7	58.17	58.22	134.19	134.64	2
Murre II	823	82	7	10	7	18	56.28	58.15	134.65	136.58	22
Murre II	824	82	10	20	10	25	57.92	58.38	134.67	136.46	10

Table B－3．Summary of data from Canada Department of Fisheries and Oceans surveys（in addition to data already in RACEBASE）．

Vessel	Cruise No．	Year	Begin		End	N．Latitude		W．Longitude		No．of samples．
			Mo．	Day Mo．	Day	Min．	Max．	Min．	Max．	
	8393	53	\％	毋\％』3	25	4905	5190	120，92	120，00	dos
Q．afsid	633\％	83	\％	§\％\％	10	51．30	52420	2903：	4， 513	If
G． 8 Fised	\＃．${ }^{6377}$	动	8	§\％	s\％	50\％\％	58633	150， 33	150137	8
O8，\％Sid	842．	54．	2	乡ょs		4594	51.	1985．	12076	4
G\％BFemod	845	64	8	\％$\%$ \％	23	50．6\％	5200	128． 2	\＄0，17	4
G．B．Reed	648	64	7	88	28	51.28	54.22	127.53	161.52	22
G．B．Reed	649	64	10	711	29	51.36	54.19	129.00	132.93	21
G．B．Reed	652	65	1	93	31	48.29	52.41	125.17	131.58	47
G．B．Reed	653	65	8	39	25	42.99	56.30	124.22	135.48	84
G．B．Reed	657	65	7	87	18	51.47	53.30	131.05	135.68	35
G\％\％ 6 dof	66\％	86．	8	『＂\＃	30	4835	5883	12685	135888	64
9． B Heed	6715	67	2	2\％4 4	2 2	48．33	51．33	124.55	12934．	98
\＆ 6 Efiend	672	67．	9	\％ 10	$3{ }^{30}$	50，8\％	5\％988	28898	13505	50
A E Hed	68\％	80．	2	2\％\＆2	28	48．7	5430	12055	432，36\％	s
C \＃Broor	89\％	69\％	2	12\％ 2	26	44， 55	49.05	12640	8，26．6\％	34
G．B．Reed	693	69	9	119	24	48.78	51.45	126.39	129.53	35
G．B．Reed	701	70	3	6	17	48.77	58.11	126.53	136.97	109
G．B．Reed	702	70	8	88	19	48.28	48.65	125.13	125.86	22
G．B．Reed	703	70	9	109	24	48.35	48.91	125.69	126.55	46
G．B．Reed	711	71	6	18.6	28	51.24	51.42	128.74	129.42	36
9．8．fend	712	7\％	\％	\＃\＃\％	3．	5\％67	56， 24	129．5\％	13544	86
9\％B．Reed	\％13	शः	10	3．1	28	508．83	5148	12853：	12956	46
	724	72．	E	14 20.	18	5 \％ 29	51	129.05	130．05	\％
O． 8 Hied	723	72	9	10\％\％	27	48.85	4894．	120.05	126．58．	42
	$\pi 4$	7	10.	\％ 1	31	48：07	48．94：	2492	प2586\％	28
G．B．Reed	731	73	1	191	31	48.45	48.59	124.91	125.59	16
G．B．Reed	732	73	3	143	28	48.36	48.91	124.78	125.87	25
G．B．Reed	733	73	6	57	25	51.32	53.19	128.55	130.87	65
G．B．Reed	734	73	9	9	24	51.05	52.07	128.20	130.03	46
G．B．Reed	743	74	6	5	25	51.01	53.30	128.67	131.94	24
G．B．Fiod	744			${ }^{6}$	23	51．32	63， 7	20920：	430\％8：	45
GB）	75 s	75．	${ }^{4}$	9	22．	48：51	5431	12553		s7
GB\％Pied	752	75．	\geqslant	10	23.	48.52	54．3．	124．80．	W3139	34
9．B．Riond	${ }_{7} 5$	75	10	10 n 10	22	48.48	\＄431	125.53	131，3\％	\＄8
G B／Besd	\％	\％\％	\％	18.	29.	48；80	489\％	125\％2．	－ 5 5\％s．	10.
Belina	661	66	，	1	31	50.47	53.78	127.53	131.89	129
Ocean Trawler	672	67	7	39	30	49.32	53.31	126.37	130.97	274
Sharlene K．	691	69	6	17	30	47.73	49.31	124.86	127.43	43
Sharlene K．	692	69	7	19	30	52.30	54.28	130.19	131.43	38
Shariene K．	693	69	8	88	20	50.82	52.40	127.76	131.25	33
Shithener	701	70	\％	6	21	48.08	4933	123,43	\％2\％	88
Sharland．	702	70	\％	4	28	52.80	53,80	120．19	131，32	8
Shinient，	703	70.	2	\％	\％ 8	50.78	52：34	12780	1312\％	20
Sharbanelk	704	70\％	3	3	31／	4， 8.08	49：26．	124.94	12709	2
Shatenors．	705	70\％	4，	10	2.	5263	54．4．4	12956	\＄19197	24
Sharlene K．	706	70	5	2	13	50.90	52.33	127.85	130.91	24
Sharlene K．	707	70	5	16	31	48.23	51.37	124.74	129.56	36
Royal Canadian	681	68	6	17	30	48.22	49.49	124.50	126.78	32
Royal Canadian	682	68	7	2	31	48.01	50.61	125.60	128.43	33
Royal Canadian	684	68	9.	5	21	47.97	49.33	124.98	126.63	31
Roydt Canadin	885	88	90．	110	30	4852	50，19	12304	$126 \% 60$	32
AK\％	\％	7\％		22\％	2\％	48.28	4848	12303%	12452．	12
A K Kright	717	\％			I，	4822\％	4832	12316	124560	19
AKKrgith	715	74		1810	30%	4823：	48840	12300	123．84	22
AK Krights	\％$\% 6$	7\％	\％ 1	4，	\％	48.2	4850	12330	184.43	9

Vessel	Cruise No.		Begin		End'		N. Latitude		W. Longitude		No. of samples
		Year	Mo.	Day		Day	Min.	Max.	Min.	Max.	
AFSHight	\%	71	2	9	12	4:	48,2\%	49.00	12004	32445	12
AK. F aght	74\%	74	7	29	7	31	4920	4924	123,60	120.76	\geqslant
AFrighe	242	74	1	19	15	20	48.98	4922	12369	12388	12
AS.Kright	751	75	5	12	5	14	49,24	49.40	12373	12430	\%
Bue Waters	791	79	9	21	\%	23.	54,36	54.54	13.04	13116	24.
Arctic Harvester	773	77	10	12	10	23	48.07	51.70	125.45	130.06	15
Arctic Harvester	781	78	10	4	10	10.	48.40	48.88	125.96	126.55	$28:$

Table B-4. Summary of data from Alaska Department of Fish and Game surveys.,

		Begin	End	N. Latitude	W. Longitude	No. of	
Vessel	Cruise No. Year	Mo.. Day Mo. Day	Min.	Max.	Min.	Max.	samples

Table B-5. Summary of data from Juneau Exploratory Fishing and Gear Research Base surveys (shrimp pot work is listed at end).

	Cruise No. Year		Begin		End		N: Latitude		W. Longitude		No. of samples.
Vessel			Mo.	Day	Mo.	Day	Min.	Max.	Min.	Max.	
Commando	65 \%	85	7	7	\% 8	31	54%	569\%	13.32	13470	8
Commando	662	653	7	3.	\% 8	30	55.78	57.93	13470	136.83	53
Gaquin Uohn A. Manling	633	63	9	25	\% 9	28	54.30	5565	13203	43475	15
	65\%	65	5	\%	\% ${ }^{\text {e }}$	27	55.28	5572	13350	134,87	32
Sohor mbahing:	653.	65	1	2	12	23	56.43	57.33	133.35 .	134300	13
John R. Manning	664	66	11	3	12	22	56.40	58.33	132.17	135.50	8
John R. Manning	674	67	9	2	10	30	56.12	57.55	132.37	135.03	11
'shrimp pot surveys*											
SthnR Hanniof	653	65		\%		27	5278	58.04	13302	13500	9014
Wohir M Maning	664	6f			11	30	5597.	58.83	3156\%	13658	3893
OHinR, Ganning\%	67\%	6\%	4	5.	5	30	5509	5607\%	134.14	133,08:	2883
Bhin R Haning:	675	67\%			12	18	54.83.	50.52	132478	13425	T 655
	66%	66 .	\% 4	3	$\stackrel{6}{6}$	31	5483	55554	13197	432733	9.048
Cape Falcon	681	68	4	1	5	30	55.98	57.13	113.29	173.30	3,496

Table B-6. Summary of data from Seattle Exploratory Fishing and Gear Research Base surveys.

			Begin		End		N. Latilude		W. Longitude		No. of samples
Vessel	Cruise No.	Year	Mo.	Day		Day	Min.	Max.	Min.	Max.	
Womm Mobbo	6	50	13	1	18	3\%	5687\%	88\%\%	13435	136.18.	92
Sohn N. Cobb	\geqslant	51	3	\$	4	30	56.95.	5944\%	13370	130\%\%	119
SomN N cobb	\%	5\%	\%	\.	10	\%	4772.	485%	124 22\%	12617	8
OHnNSCotb	10	52	3	3	4	3).	55.90.	\%00\%	13350	13670	96
06 N - 666	11	52	5	4	6	31\%	4742.	4837	12460	12490\%	40
John N. Cobb	13	52	8	1	9	31	44.77	48.73	124.35	125.70	50
John N. Cobb	22	55	3	23	3	30	47.95	49.10	125.58	126.98	18
John N. Cobb	24	55	10	2	11	31	46.50	48.37	123.73	125.02	59
John N. Cobb	25	56	2	1	3	29	48.17	48.47	123.10	124.67	61
John N. Cobb	26	56	3	1	4	31	46.38	47.67	124.40	125.00	94
Hin M 080	27	55	\%	2	6	31	4208	31.50	12427.	20.38	86,
OhnNECobl	29	56	10.	\%	It	22	544\%.	55.67\%	19240	134.78	40
Hohin Eoth	35	58	2	88	2	2\%	4882	¢动\%	12273	12346	54,
GChin M Cobro	37	58	4	2	5		45.85	4877	12452	12570	6\%
Hthn N Cobb	38	56	\%	11	\%.	2 2\%.	4735	4620.	124,45.	124.52	64
John N. Cobb	40	58	10	2	11	29	44.70	48.63	124.30	125.67	50
John N. Cobb	45	60	3	1	4	31	47.72	48.33	123.70	125.62	71
John N. Cobb	46	60	5	2	6	31	48.18	48.77	124.93	126.25	44
John N. Cobb	47	60	7	2	9	28	50.48	51.05	128.33	129.47	18
John N. Cobb	48	60	9	1	11	31	43.03	44.53	124.27	124.77	54
	50	63	4	\geqslant	6	30,	4, ${ }^{\text {\% }}$	4\% 6 b	12453	\$24.97\%	6
	55	82	8	\$	9	3t\%	2777?	4888.	116.98.	130.50.	73
ShinN CObb	56	62	10.	8	43	29	4810	49.98	124.90\%	12777\%	6
bola N Cobb	58	63	3	1	3	2?.	2920	3467	115.52	123:32	36,
Whin COHb	59	63	5	\%	5	30.	47495.	48880	12472	126\% 23	80
John N. Cobb	61	63	8	17	8	29	51.27	51.70	176.37	176.70	41
John N. Cobb	62	63	10	1	11	20	43.33	48.30	124.05	124.70	128
John N. Cobb	65	64	4	13	5	29	46.58	48.43	124.40	125.23	57
John N. Cobb	67	64	8	1	10	31	42.98	48.38	124.23	125.02	41
John N. Cobb	68	64	10	5	11	29	47.30	48.97	122.37	124.95	24
Ofron embib	73	65	\%	4	5	31.	4505.	4817	12238	125.00\%	29
OHNN. 6080	T2	65	7.	2	\&	30	4230\%	47888	12235\%	24\%\%	29
A0tm N Cobb	73	85	9	\%	9	\%	$37 \% 8$	4587.	122.95\%	124,92	\%
Sohn 4.8060	74	65	10	\%	\#	22	4735.	4870	12258	2620	9
URHNN Cobb	75	66	1	10	1	2?	4620.3	48.43.	1223\%	124.9\%	23
John N. Cobb	76	66	2	1	3	28	29.52	47.73	115.88	122.52	8
John N. Cobb	77	66	4	23	4	30	46.18	46.78	124.20	124.57	7
John N. Cobb	78	66	5	3	6	31	46.43	48.10	122.27	124.72	18
John N. Cobb	79	66	7	2	8	29	46.00	48.60	124.32	125.50	18
John N. Cobb	80	66	3	15	8	31	46.00	48.45	122.35	125.25	25
OfinNecobo	01	66		\% 4	10	3	4,330,	48.73		12563	F5
MhmN Cobts	82	80		\#1	1.	1\%	4678	47.03	12423	124.30.	2
W0tin N cobib	84	67	2	20	3	23.	47.50\%	4485.	12467.	185.03	\%
Uothin Cobb	85	67	\%	\%	3	23	4505.	4227,	12312	12448	4
Wmincosb	85	67.	4	2	8.	28.	44,15:	4815	122\%\%	12470	12
John N. Cobb	87	67	5	1	6	28	44.18	47.58	124.13	124.77	8
John N. Cobb	88	67	7	11	7	30	46.17	47.87	124.27	124.77	34
John N. Cobb	92	68	1	8	1	23	47.82	48.47	122.45	124.98	21
John N. Cobb	93	68	2	4	3	24	33.02	35.00	117.37	121.20	6
John N. Cobb	94	68	4	1	5	30	47.35	48.83	122.47	123.10	102
A6mN Cobs	95	68	5				458\%	4887	12025	4 4989	148
Whill eobb	17	63	$\frac{5}{8}$	2\%	$\stackrel{3}{ }$	28	4812	40, 2	125.67	12567	69
GhinMCobs	60\%	69	?		2	26	48.05:	4635	124.23	12430	\#4
Hohn C Cobs	694	69	5		6	28	9802	4897	12733	12577	87.
Uhon cobb	911	6	9	12.	9	25	4443:	4817	12300	24 33	100
Pacific Harvester	701	70	9	18	9	27	45.37	48.43	124.18	125.23	10
New Life	696	69	5	15	5	28	42.50	46.62	124.10	125.10	32
Miller Freeman	702	70	5	6	5	9	40.47	40.78	124.50	124.82	18

Table B－7．Summary of data from Southern California Coastal Water Research Project surveys．

			Begin		End		N．Latitude		W．Longitude		No．of samples
Vessel	Cruise No．	Year	Mo．	Day	Mo．	Day	Min．	Max．	Min．	Max．	
Mormesumw ors	703	78	5	6	5	8．	83098	35985	33989	13898	4
Malifisuruyors	7\％	71	8．	24	9	23	33.95	34．03	H186\％	\＃1888	\％
Marine Simieyoks	72	72	5		H	31／	3882	34033	H184	133．97	41
Muminsumjen	731	7s	4	17．	4	24＊	33.40	33998	11845：	18865：	9
Matno Sursyowk	74	34	2	\％	8	23\％	3590\％	38.96	18．45：	1859	88
Marine Surveyor	751	75	1	1	5	29	33.46	34.13	118.46	119.24	21
Marine Surveyor	761	76	8	5	12	29	33.51	34.01	117.80	118.84	16
Marine Surveyor	771	77	4	1	6	28	32.56	34.45	117.19	120.37	49
Sea－S－Dee	711	71	2	2	12	30	33.30	33.82	118.11	133.71	74
Sea－S－Dee	721	72	1	2	12	26	33.45	33.82	118.26	118.62	67
SobSors	731	73．	\％	5	\％	2\％	33，45	8382	\＃88\％	41005	56
Seasore	7\％1	74	5．	\bigcirc	12	3\＃	33，45	3\％\％\％	1882\％	अ862	68
Sons ${ }^{\text {SOem }}$	\＄5\％	75s	8．	2	\％	30	33.45	35882	11826．	18589	65
S94－40\％	783	76	5．	5	12	17	33．45	33.82	\＄1820\％	17859	53
Sen SHSo	\％	\％	？	\％．	，	10	\＄ 860	35882	1826：	11846：	24
Fury II	691	69	8	19	11	29	33.57	33.62	117.89	118.11	14
Fury II	701	70	2	20	5	26	33.57	33.62	117.89	118.11	16
Fury II	702	70	12	18	12	18	33.50	33.52	117.76	117.80	2
Fury II	711	71	1	1	12	31	33.31	33.63	117.57	118.02	260
Fury II	721	72	8	15	8	15	33.46	33.59	117.74	117.90	10
\％u\％\＃	781	73	2	8	11	15	93346	33， 54	1274	\＄7800	30
Firy	732	73	\％		12	31	33.30	33， 61	17．57\％	18000	280
FUサ\＃	711	74			12	2b	33：04，	35.54	1268	11859	47
Unknour	631	67	3	2	5	27	943\％	3444	17957．	179．74	15
Untioum	69\％	69	¢	，	8	29.	340%	3440	1875\％	119\％	54
Van Tuna	701	70	8	9	12	19	33.57	33.62	117.89	118.11	16
Van Tuna	711	71	2	10	12	25	33.57	33.62	117.89	118.11	32
Van Tuna	712	71	10	1	10	1	33.41	33.46	118.36	118.50	6
Van Tuna	713	71	12	20	12	21	34.09	34.14	119.18	119.22	11
Van Tuna	714	71	1	3	12	30	33.39	33.73	118.09	118.35	41
Vanguna	721	72	2	\％	\％	12	93S\％	85862	1188	य8\％	3
Yarmor	722	72	2．	20	2	20	34，	34.10	19：24	\？ 4 d	14
Yantunas	723	72		3	72	29	93445．	3370	4798．	\＄846	4
Mnfuna	731	73	校	5．	13	14	33 57	33.82	17．89\％	188．11	32
Vanctuna	732\％	73	\％	24	9	26.	3956\％	3403	17\％99：	1 ± 63	28
Van Tuna	733	73	10	12	10	12	33.70	33.70	118.36	118.36	1
Van Tuna	741	74	2	8	12	18	33.57	33.62	117.89	118.11	30
Van Tuna	751	75	2	8	10	26	33.57	33.62	117.97	118.06	29
Van Tuna	761	76	1	6	10	28	33.57	33.62	117.97	118.06	28
Van Tuna	771	77	1	2	7	12	33.57	33.62	117.96	118.09	23
Vallaroly	721	72	3	6．	9	4	33398	35\％	120，	12030	5
Yalleray	$\geqslant 2$	\＄／	\％	\％	\％	28	2264．	34，42	4915	120465	28
Prowes	572	57\％	9		10	\％	33．92．	3300\％	H85？	1858．	\％
\％	58\％	58	\＃	，	$\geqslant 2$	3	33\％	3400	118343	HE878．	97.
Prouldem	59\％	59	\％	\％	\％	28	3S\％85s	3402	484\％	118\％\％	129
Prowler	601	60	1	7	12	24	33.81	34.02	118.41	118.76	154
Prowler	611	61	1	9	8	26	33.81	34.02	118.41	118.76	65
Anton Doran	121	12	3	24	11	30	33.63	33.76	118.18	118.29	3
Anton Doran	131	13	4	1	12	29	33.65	34.01	118.24	118.54	14
Anton Doran	141	14	2	12	8	22	33.67	34.01	118.19	118.62	13
Anememaran	\＄59	13	\％	\％	\geqslant	91	838\％	94002	18．30	48：6	＋
Amion Ouran	I6\％	告	3		\＃2	30%	33 429	3397，	18：00\％	18800	翌
Arith	72\％	17			\＄	28\％	3859	2388	y1797\％	11544＊	\％
	22	22	\＆		10	2\％	33086	33．76	\＃18．	18，43．	行
namesumowms		\％$\%$	8．		\％		3537\％	3538，	120888．	120888	\％\％／n的

Table B-7. Summary of data from SCCWRP surveys (Continued).

Table B-8. Summary of data from NMFS and federal/state cooperative scallop surveys.

Vessel	Cruise No. Year		Begin		End		N. Latitude		W. Longitude		No. of samples
			Mo.	Day		Day	Min.	Max.	Min.	Max.	
Norlopacife	S91	69	5	\$	8	31	53.9	594	154,91	16505	175
Vengo Queen	681	68	4	\%	8	31	56%	60.19	13732	155\%77	472
name minnown	9801	68	5	18	5	18	59,89\%	59980.	\%4664	146.61	247
nameeuntrowth	815	81.	10.	\&	H\#	3%	43.44	4814	12401	124.72:	110
mameuntrown	801	80	8.	1	8.	13	44.56	44.57.	124.62	1248	103.
name unknown	9801	80	8	11	8	13	44.58	44.71	124.60	124.84	109

